Registration of Pathological Images

This paper proposes an approach to improve atlas-to-image registration accuracy with large pathologies. Instead of directly registering an atlas to a pathological image, the method learns a mapping from the pathological image to a quasi-normal image, for which more accurate registration is possible. Specifically, the method uses a deep variational convolutional encoder-decoder network to learn the mapping. Furthermore, the method estimates local mapping uncertainty through network inference statistics and uses those estimates to down-weight the image registration similarity measure in areas of high uncertainty. The performance of the method is quantified using synthetic brain tumor images and images from the brain tumor segmentation challenge (BRATS 2015).

[1]  Nikos Paragios,et al.  DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency Weighting , 2009, IPMI.

[2]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[3]  Snehashis Roy,et al.  Magnetic resonance image synthesis through patch regression , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[4]  Yoshua Bengio,et al.  Denoising Criterion for Variational Auto-Encoding Framework , 2015, AAAI.

[5]  D. Louis Collins,et al.  Unbiased average age-appropriate atlases for pediatric studies , 2011, NeuroImage.

[6]  Marc Niethammer,et al.  Registration for Correlative Microscopy Using Image Analogies , 2012, WBIR.

[7]  Christos Davatzikos,et al.  Comparative Evaluation of Registration Algorithms in Different Brain Databases With Varying Difficulty: Results and Insights , 2014, IEEE Transactions on Medical Imaging.

[8]  Brian B. Avants,et al.  The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) , 2015, IEEE Transactions on Medical Imaging.

[9]  Marc Niethammer,et al.  Low-Rank Atlas Image Analyses in the Presence of Pathologies , 2015, IEEE Transactions on Medical Imaging.

[10]  John G. Csernansky,et al.  Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults , 2007, Journal of Cognitive Neuroscience.

[11]  Danielle F. Pace,et al.  Geometric Metamorphosis , 2011, MICCAI.

[12]  Snehashis Roy,et al.  MR to CT registration of brains using image synthesis , 2014, Medical Imaging.

[13]  Bruce Fischl,et al.  Highly accurate inverse consistent registration: A robust approach , 2010, NeuroImage.

[14]  Snehashis Roy,et al.  MR contrast synthesis for lesion segmentation , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[15]  John S. Duncan,et al.  Non-rigid Registration with Missing Correspondences in Preoperative and Postresection Brain Images , 2010, MICCAI.

[16]  Guido Gerig,et al.  Segmentation of serial MRI of TBI patients using personalized atlas construction and topological change estimation , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[17]  Sébastien Ourselin,et al.  Fast free-form deformation using graphics processing units , 2010, Comput. Methods Programs Biomed..

[18]  Chris Rorden,et al.  Spatial Normalization of Brain Images with Focal Lesions Using Cost Function Masking , 2001, NeuroImage.

[19]  Christos Davatzikos,et al.  GLISTR: Glioma Image Segmentation and Registration , 2012, IEEE Transactions on Medical Imaging.

[20]  Guido Gerig,et al.  Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction☆ , 2012, NeuroImage: Clinical.