Thermal fluctuations of red blood cell membrane via a constant-area particle-dynamics model.

We describe a model of the mechanical properties of the cell plasma membrane using a finite-temperature particle-dynamics simulation of the whole cell, in which a two-dimensional network of virtual particles embedded in a three-dimensional closed surface represents the membrane. The particles interact via harmonic potential and dihedral angle potential and are subject to a constant area constraint. The evolution of the positions of the particles yields the equilibrium state of the membrane and allows determination of the membrane thermal fluctuations and the elastic moduli. We show that time-averaging of the cell-model configurations allows quantitative comparison with experimental data on membrane fluctuations and elastic moduli of the red blood cell.

[1]  S. Hénon,et al.  A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. , 1999, Biophysical journal.

[2]  F. Brochard,et al.  Frequency spectrum of the flicker phenomenon in erythrocytes , 1975 .

[3]  Gerhard Gompper,et al.  Random surface discretizations and the renormalization of the bending rigidity , 1996 .

[4]  R. Waugh,et al.  Thermoelasticity of red blood cell membrane. , 1979, Biophysical journal.

[5]  D. Discher,et al.  Deformation-enhanced fluctuations in the red cell skeleton with theoretical relations to elasticity, connectivity, and spectrin unfolding. , 2001, Biophysical journal.

[6]  E. Sackmann,et al.  Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition. , 1995, Biophysical journal.

[7]  Dennis E. Discher,et al.  PHASE TRANSITIONS AND ANISOTROPIC RESPONSES OF PLANAR TRIANGULAR NETS UNDER LARGE DEFORMATION , 1997 .

[8]  S. V. Levin,et al.  Local mechanical oscillations of the cell surface within the range 0.2–30 Hz , 2004, European Biophysics Journal.

[9]  E. Evans Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. , 1983, Biophysical journal.

[10]  W. Helfrich,et al.  Undulations, steric interaction and cohesion of fluid membranes , 1984 .

[11]  T. Lubensky,et al.  Fluctuations of solid membranes. , 1988, Physical review letters.

[12]  Nelson,et al.  Defects in flexible membranes with crystalline order. , 1988, Physical review. A, General physics.

[13]  Sackmann,et al.  Spectral analysis of erythrocyte flickering in the 0.3-4- microm-1 regime by microinterferometry combined with fast image processing. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[14]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[15]  S Levin,et al.  Cell membrane fluctuations are regulated by medium macroviscosity: evidence for a metabolic driving force. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[16]  L. Peliti,et al.  Fluctuations in membranes with crystalline and hexatic order , 1987 .

[17]  E. Ben-Jacob,et al.  Atomic force pulling: probing the local elasticity of the cell membrane , 2000, European Biophysics Journal.

[18]  D. Boal,et al.  Mechanics of the cell , 2001 .

[19]  Nelson,et al.  Crumpling transition in polymerized membranes. , 1987, Physical review letters.

[20]  C. Lim,et al.  Mechanics of the human red blood cell deformed by optical tweezers , 2003 .

[21]  M. Plischke,et al.  Entropic rigidity of randomly diluted two- and three-dimensional networks. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  T. Lubensky,et al.  Fluctuations and lower critical dimensions of crystalline membranes , 1989 .

[23]  R. Waugh,et al.  Elastic area compressibility modulus of red cell membrane. , 1976, Biophysical journal.

[24]  D. Boal,et al.  Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. , 1998, Biophysical journal.

[25]  Richard J. Sadus,et al.  Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation , 1999 .