On finding the jump number of a partial orber by substitution decomposition

Consider the linear extensions of a partial order. A jump occurs in a linear extension if two consecutive elements are unrelated in the partial order. The jump number problem is to find a linear extension of the ordered set which contains the smallest possible number of jumps. We discuss a decomposition approach for this problem from an algorithmic point of view. Based on this some new classes of partial orders are identified, for which the problem is polynomially solvable.

[1]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[2]  Michel Habib,et al.  Nombre de sauts et graphes série-parallèles , 1979, RAIRO Theor. Informatics Appl..

[3]  P. Winkler,et al.  Minimizing setups for cycle-free ordered sets , 1982 .

[4]  Michel Habib,et al.  On the X-join decomposition for undirected graphs , 1979, Discret. Appl. Math..

[5]  Ulrich Faigle,et al.  A Construction for Strongly Greedy Ordered Sets , 1984 .

[6]  W. Cunningham Decomposition of Directed Graphs , 1982 .

[7]  Rainer Schrader,et al.  Algorithmic approaches to setup minimization , 1985, SIAM J. Comput..

[8]  Eugene L. Lawler,et al.  The Recognition of Series Parallel Digraphs , 1982, SIAM J. Comput..

[9]  Rolf H. Möhring,et al.  A Fast Algorithm for the Decomposition of Graphs and Posets , 1983, Math. Oper. Res..

[10]  Maciej M. Syslo,et al.  A Labeling Algorithm to Recognize a Line Digraph and Output its Root Graph , 1982, Inf. Process. Lett..

[11]  Ivan Rival Optimal linear extensions by interchanging chains , 1983 .

[12]  Maciej M. Sysło,et al.  Minimizing the jump number for partially ordered sets: A graph-theoretic approach , 1984 .

[13]  Michel Habib,et al.  The Jump Number of Dags and Posets: An Introduction , 1980 .

[14]  Mohamed H. El-Zahar,et al.  Greedy linear extensions to minimize jumps , 1985, Discret. Appl. Math..

[15]  Gerhard Gierz,et al.  Minimizing Setups for Ordered Sets: A Linear Algebraic Approach , 1983 .

[16]  Martin Charles Golumbic,et al.  Comparability graphs and a new matroid , 1977, J. Comb. Theory, Ser. B.

[17]  Eugene L. Lawler,et al.  Machine scheduling with precedence con-straints , 1982 .