Periodic solutions for a class of new superquadratic second order Hamiltonian systems

Abstract A new superquadratic growth condition is introduced, which is an extension of the well-known superquadratic growth condition due to P.H. Rabinowitz and the nonquadratic growth condition due to Gui-Hua Fei. An existence theorem is obtained for periodic solutions of a class of new superquadratic second order Hamiltonian systems by the minimax methods in critical point theory, specially, a local linking theorem.

[1]  X. H. Tang,et al.  Existence and multiplicity of periodic solutions for a class of second-order Hamiltonian systems , 2010, Comput. Math. Appl..

[2]  Martin Schechter,et al.  Periodic non-autonomous second-order dynamical systems , 2006 .

[3]  J. Mawhin,et al.  Critical Point Theory and Hamiltonian Systems , 1989 .

[4]  Ma Shao-ya Periodic solutions for a class of non-autonomous Hamiltonian systems , 2013 .

[5]  Michel Willem Periodic Oscillations of Odd 2nd Order Hamiltonian-systems , 1984 .

[6]  Chun-Lei Tang,et al.  Periodic solutions for nonautonomous second order systems with sublinear nonlinearity , 1998 .

[7]  Martin Schechter,et al.  On the Solvability of Semilinear Gradient Operator Equations , 1977 .

[8]  Paul H. Rabinowitz,et al.  On subharmonic solutions of hamiltonian systems , 1980 .

[9]  X. H. Tang,et al.  New existence of homoclinic orbits for a second-order Hamiltonian system , 2011, Comput. Math. Appl..

[10]  Paul H. Rabinowitz,et al.  On a Class of Functionals Invariant under a Zn Action. , 1988 .

[11]  Chun-Lei Tang,et al.  Periodic Solutions for Second Order Systems with Not Uniformly Coercive Potential , 2001 .

[12]  Xiumei He,et al.  Periodic solutions for a class of nonautonomous second order Hamiltonian systems , 2008 .

[13]  Chun-Lei Tang,et al.  Periodic solutions for some nonautonomous second order Hamiltonian systems , 2008 .

[14]  Vieri Benci,et al.  Some critical point theorems and applications , 1980 .

[15]  Shi Xia Luan,et al.  Periodic Solutions of Nonautonomous Second Order Hamiltonian Systems , 2005 .

[16]  Qingye Zhang,et al.  Infinitely many periodic solutions for second order Hamiltonian systems , 2011, 1106.0360.

[17]  Tianqing An,et al.  The existence of periodic solutions of non-autonomous second-order Hamiltonian systems , 2011 .

[18]  Michel Willem,et al.  Applications of local linking to critical point theory , 1995 .

[19]  Chun-Lei Tang,et al.  A note on periodic solutions of nonautonomous second-order systems , 2004 .

[20]  Anmin Mao,et al.  Periodic solutions for a class of non-autonomous Hamiltonian systems , 2005 .

[21]  Guanwei Chen,et al.  Ground state periodic solutions of second order Hamiltonian systems without spectrum 0 , 2013 .

[22]  Guihua Fei,et al.  On periodic solutions of superquadratic Hamiltonian systems , 2002 .

[23]  Chun-Lei Tang,et al.  Periodic solutions of nonautonomous second-order Hamiltonian systems with even-typed potentials☆ , 2003 .

[24]  Zhu-Lian Tao,et al.  Periodic solutions for a class of superquadratic Hamiltonian systems , 2007 .

[25]  Chun-Lei Tang,et al.  Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems , 2010 .

[26]  Chun-Lei Tang,et al.  Periodic and subharmonic solutions of a class of subquadratic second-order Hamiltonian systems ✩ , 2007 .

[27]  Jiabao Su,et al.  Multiple periodic solutions of the second order Hamiltonian systems with superlinear terms , 2012 .

[28]  Paul H. Rabinowitz,et al.  Periodic solutions of hamiltonian systems , 1978 .