Database-independent molecular formula annotation using Gibbs sampling through ZODIAC

[1]  Tomasz Burzykowski,et al.  The isotopic distribution conundrum. , 2012, Mass spectrometry reviews.

[2]  Russ Greiner,et al.  Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification , 2013, Metabolomics.

[3]  P. Retailleau,et al.  Euphorbia dendroides Latex as a Source of Jatrophane Esters: Isolation, Structural Analysis, Conformational Study, and Anti-CHIKV Activity. , 2016, Journal of natural products.

[4]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  S. Böcker,et al.  Searching molecular structure databases with tandem mass spectra using CSI:FingerID , 2015, Proceedings of the National Academy of Sciences of the United States of America.

[6]  N. Hertkorn,et al.  Kendrick-Analogous Network Visualisation of Ion Cyclotron Resonance Fourier Transform Mass Spectra: Improved Options for the Assignment of Elemental Compositions and the Classification of Organic Molecular Complexity , 2011, European journal of mass spectrometry.

[7]  K. Reinert,et al.  OpenMS: a flexible open-source software platform for mass spectrometry data analysis , 2016, Nature Methods.

[8]  Nuno Bandeira,et al.  Mass spectral molecular networking of living microbial colonies , 2012, Proceedings of the National Academy of Sciences.

[9]  Emma L. Schymanski,et al.  MetFrag relaunched: incorporating strategies beyond in silico fragmentation , 2016, Journal of Cheminformatics.

[10]  Julie C. Lumeng,et al.  Global chemical effects of the microbiome include new bile-acid conjugations , 2020, Nature.

[11]  Emma L. Schymanski,et al.  Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects , 2016 .

[12]  Aviv Amirav,et al.  Isotope abundance analysis methods and software for improved sample identification with supersonic gas chromatography/mass spectrometry. , 2006, Rapid communications in mass spectrometry : RCM.

[13]  Rainer Breitling,et al.  Integrated Probabilistic Annotation (IPA): A Bayesian-based annotation method for metabolomic profiles integrating biochemical connections, isotope patterns and adduct relationships. , 2019, Analytical chemistry.

[14]  Ge Xia,et al.  Strong computational lower bounds via parameterized complexity , 2006, J. Comput. Syst. Sci..

[15]  Antony J. Williams,et al.  ChemSpider:: An Online Chemical Information Resource , 2010 .

[16]  Simon Rogers,et al.  Feature-based molecular networking in the GNPS analysis environment , 2020, Nature Methods.

[17]  David Zuckerman,et al.  Electronic Colloquium on Computational Complexity, Report No. 100 (2005) Linear Degree Extractors and the Inapproximability of MAX CLIQUE and CHROMATIC NUMBER , 2005 .

[18]  E. Vuori,et al.  Isotopic pattern and accurate mass determination in urine drug screening by liquid chromatography/time-of-flight mass spectrometry. , 2006, Rapid communications in mass spectrometry : RCM.

[19]  Emilien L. Jamin,et al.  ProbMetab : an R package for Bayesian probabilistic annotation of LC-MS based metabolomics , 2013 .

[20]  Silvia Heuerding,et al.  Simple tools for the computer-aided interpretation of mass spectra , 1993 .

[21]  L Mark Hall,et al.  Evaluation of an Artificial Neural Network Retention Index Model for Chemical Structure Identification in Nontargeted Metabolomics. , 2018, Analytical chemistry.

[22]  Juho Rousu,et al.  Classes for the masses: Systematic classification of unknowns using fragmentation spectra , 2020, bioRxiv.

[23]  Florian Rasche,et al.  Towards de novo identification of metabolites by analyzing tandem mass spectra , 2008, ECCB.

[24]  David S. Wishart,et al.  HMDB 4.0: the human metabolome database for 2018 , 2017, Nucleic Acids Res..

[25]  Stephen E. Stein,et al.  Metabolite profiling of a NIST Standard Reference Material for human plasma (SRM 1950): GC-MS, LC-MS, NMR, and clinical laboratory analyses, libraries, and web-based resources. , 2013, Analytical chemistry.

[26]  Yvan Saeys,et al.  Systematic Structural Characterization of Metabolites in Arabidopsis via Candidate Substrate-Product Pair Networks[C][W] , 2014, Plant Cell.

[27]  Kristian Fog Nielsen,et al.  Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking , 2016, Nature Biotechnology.

[28]  Nigel W. Hardy,et al.  Proposed minimum reporting standards for chemical analysis , 2007, Metabolomics.

[29]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[30]  Stephen Stein,et al.  Mass spectral reference libraries: an ever-expanding resource for chemical identification. , 2012, Analytical chemistry.

[31]  Zsuzsanna Lipták,et al.  Decomposing Metabolomic Isotope Patterns , 2006, WABI.

[32]  Gang Fu,et al.  PubChem Substance and Compound databases , 2015, Nucleic Acids Res..

[33]  Russell Impagliazzo,et al.  On the Complexity of k-SAT , 2001, J. Comput. Syst. Sci..

[34]  Francesco Corona,et al.  Accelerated isotope fine structure calculation using pruned transition trees. , 2015, Analytical chemistry.

[35]  Juho Rousu,et al.  SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information , 2019, Nature Methods.

[36]  J. Keurentjes,et al.  Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry , 2007, Nature Protocols.

[37]  Sebastian Böcker,et al.  Bayesian networks for mass spectrometric metabolite identification via molecular fingerprints , 2018, Bioinform..

[38]  M. Hirai,et al.  MassBank: a public repository for sharing mass spectral data for life sciences. , 2010, Journal of mass spectrometry : JMS.

[39]  Emma L. Schymanski,et al.  Automatic recalibration and processing of tandem mass spectra using formula annotation. , 2013, Journal of mass spectrometry : JMS.

[40]  Thomas Zichner,et al.  Identifying the unknowns by aligning fragmentation trees. , 2012, Analytical chemistry.

[41]  Juho Rousu,et al.  Critical Assessment of Small Molecule Identification 2016: automated methods , 2017, Journal of Cheminformatics.

[42]  Pieter C. Dorrestein,et al.  High-Resolution Liquid Chromatography Tandem Mass Spectrometry Enables Large Scale Molecular Characterization of Dissolved Organic Matter , 2017, Front. Mar. Sci..

[43]  Markus Meringer,et al.  MS/MS Data Improves Automated Determination of Molecular Formulas by Mass Spectrometry , 2011 .

[44]  Tomáš Pluskal,et al.  Highly accurate chemical formula prediction tool utilizing high-resolution mass spectra, MS/MS fragmentation, heuristic rules, and isotope pattern matching. , 2012, Analytical chemistry.

[45]  T. Dittmar,et al.  A simple and efficient method for the solid‐phase extraction of dissolved organic matter (SPE‐DOM) from seawater , 2008 .

[46]  G. Siuzdak,et al.  METLIN: A Technology Platform for Identifying Knowns and Unknowns. , 2018, Analytical chemistry.

[47]  Simon Rogers,et al.  Probabilistic assignment of formulas to mass peaks in metabolomics experiments , 2009, Bioinform..

[48]  Zsuzsanna Lipták,et al.  SIRIUS: decomposing isotope patterns for metabolite identification , 2008, Bioinform..

[49]  Vinayak Agarwal,et al.  Complexity of naturally produced polybrominated diphenyl ethers revealed via mass spectrometry. , 2015, Environmental science & technology.

[50]  Rainer Breitling,et al.  MetAssign: probabilistic annotation of metabolites from LC–MS data using a Bayesian clustering approach , 2014, Bioinform..

[51]  Mingxun Wang,et al.  Bioactivity-Based Molecular Networking for the Discovery of Drug Leads in Natural Product Bioassay-Guided Fractionation. , 2018, Journal of natural products.

[52]  Tao Huan,et al.  MyCompoundID: using an evidence-based metabolome library for metabolite identification. , 2013, Analytical chemistry.

[53]  Sebastian Böcker,et al.  Predicting the Presence of Uncommon Elements in Unknown Biomolecules from Isotope Patterns. , 2016, Analytical chemistry.

[54]  Pieter C Dorrestein,et al.  Illuminating the dark matter in metabolomics , 2015, Proceedings of the National Academy of Sciences.

[55]  Oliver Fiehn,et al.  Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry , 2007, BMC Bioinformatics.

[56]  Matej Oresic,et al.  MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data , 2010, BMC Bioinformatics.

[57]  Sebastian Böcker,et al.  Fragmentation trees reloaded , 2014, Journal of Cheminformatics.