Stance Classification of Context-Dependent Claims

Recent work has addressed the problem of detecting relevant claims for a given controversial topic. We introduce the complementary task of Claim Stance Classification, along with the first benchmark dataset for this task. We decompose this problem into: (a) open-domain target identification for topic and claim (b) sentiment classification for each target, and (c) open-domain contrast detection between the topic and the claim targets. Manual annotation of the dataset confirms the applicability and validity of our model. We describe an implementation of our model, focusing on a novel algorithm for contrast detection. Our approach achieves promising results, and is shown to outperform several baselines, which represent the common practice of applying a single, monolithic classifier for stance classification.

[1]  Geoffrey Zweig,et al.  Polarity Inducing Latent Semantic Analysis , 2012, EMNLP.

[2]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[3]  Ronen Feldman,et al.  The Stock Sonar - Sentiment Analysis of Stocks Based on a Hybrid Approach , 2011, IAAI.

[4]  Matt Thomas,et al.  Get out the vote: Determining support or opposition from Congressional floor-debate transcripts , 2006, EMNLP.

[5]  Graeme Hirst,et al.  Computing Lexical Contrast , 2013, CL.

[6]  Marilyn A. Walker,et al.  Stance Classification using Dialogic Properties of Persuasion , 2012, NAACL.

[7]  Paolo Ferragina,et al.  TAGME: on-the-fly annotation of short text fragments (by wikipedia entities) , 2010, CIKM.

[8]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[9]  Vincent Ng,et al.  Stance Classification of Ideological Debates: Data, Models, Features, and Constraints , 2013, IJCNLP.

[10]  Liang Zhou,et al.  Identifying and classifying subjective claims , 2007, DG.O.

[11]  Lei Zhang,et al.  Sentiment Analysis and Opinion Mining , 2017, Encyclopedia of Machine Learning and Data Mining.

[12]  Timothy Baldwin,et al.  Collective Classification of Congressional Floor-Debate Transcripts , 2011, ACL.

[13]  Swapna Somasundaran,et al.  Recognizing Stances in Online Debates , 2009, ACL.

[14]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[15]  Adam Faulkner,et al.  Automated Classification of Stance in Student Essays: An Approach Using Stance Target Information and the Wikipedia Link-Based Measure , 2014, FLAIRS.

[16]  Noam Slonim,et al.  TR9856: A Multi-word Term Relatedness Benchmark , 2015, ACL.

[17]  Noam Slonim,et al.  Context Dependent Claim Detection , 2014, COLING.

[18]  Saif Mohammad,et al.  SemEval-2016 Task 6: Detecting Stance in Tweets , 2016, *SEMEVAL.

[19]  Claire Cardie,et al.  Multi-Level Structured Models for Document-Level Sentiment Classification , 2010, EMNLP.

[20]  Lise Getoor,et al.  Supervised and Unsupervised Methods in Employing Discourse Relations for Improving Opinion Polarity Classification , 2009, EMNLP.

[21]  Michael C. McCord,et al.  Slot Grammar: A System for Simpler Construction of Practical Natural Language Grammars , 1989, Natural Language and Logic.

[22]  Paolo Torroni,et al.  Context-Independent Claim Detection for Argument Mining , 2015, IJCAI.

[23]  Marilyn A. Walker,et al.  That is your evidence?: Classifying stance in online political debate , 2012, Decis. Support Syst..

[24]  Noam Slonim,et al.  A Benchmark Dataset for Automatic Detection of Claims and Evidence in the Context of Controversial Topics , 2014, ArgMining@ACL.

[25]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[26]  Serena Villata,et al.  A natural language bipolar argumentation approach to support users in online debate interactions† , 2013, Argument Comput..

[27]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.

[28]  Marilyn A. Walker,et al.  Collective Stance Classification of Posts in Online Debate Forums , 2014 .

[29]  Christopher D. Manning,et al.  Incorporating Non-local Information into Information Extraction Systems by Gibbs Sampling , 2005, ACL.

[30]  Sanda M. Harabagiu,et al.  Negation, Contrast and Contradiction in Text Processing , 2006, AAAI.

[31]  Michael C. McCord,et al.  Deep parsing in Watson , 2012, IBM J. Res. Dev..

[32]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[33]  Annie Zaenen,et al.  Contextual Valence Shifters , 2006, Computing Attitude and Affect in Text.

[34]  Bing Liu,et al.  Mining Opinion Features in Customer Reviews , 2004, AAAI.

[35]  Benjamin Van Durme,et al.  Open Domain Targeted Sentiment , 2013, EMNLP.

[36]  Philip S. Yu,et al.  A holistic lexicon-based approach to opinion mining , 2008, WSDM '08.

[37]  Oren Etzioni,et al.  Extracting Product Features and Opinions from Reviews , 2005, HLT.

[38]  Swapna Somasundaran,et al.  Recognizing Stances in Ideological On-Line Debates , 2010, HLT-NAACL 2010.

[39]  Sabine Schulte im Walde,et al.  Uncovering Distributional Differences between Synonyms and Antonyms in a Word Space Model , 2013, IJCNLP.