T2K measurements of muon neutrino and antineutrino disappearance using $3.13\times 10^{21}$ protons on target

We report measurements by the T2K experiment of the parameters $\theta_23$ and $\Delta m^2_{32}$ which govern the disappearance of muon neutrinos and antineutrinos in the three-flavor PMNSneutrino oscillation model at T2K's neutrino energy and propagation distance. Utilizing the ability of the experiment to run with either a mainly neutrino or a mainly antineutrino beam, muon-like events from each beam mode are used to measure these parameters separately for neutrino and antineutrino oscillations. Data taken from $1.49\times 10^{21}$ protons on target (POT) in neutrino mode and $1.64\times 10^21$ POT in antineutrino mode are used. Assuming the normal neutrino mass ordering the best-fit values obtained by T2K were $\sin^2\theta_{23}=0.51^{+0.06}_{-0.07}$ $(0.43^{+0.21}_{-0.05})$ and $\Delta m^2_{32}=2.47^{+0.08}_{-0.09} (2.50^{+0.18}_{-0.13})$ $eV^2/c^4$. for neutrinos (antineutrinos). No significant differences between the values of the parameters describing the disappearance of muon neutrinos and antineutrinos were observed. An analysis using an effective two-flavour neutrino oscillation model where the sine of the mixing angle is allowed to take non-physical values larger than 1 is also performed to check the consistency of our data with the three-flavor model. Our data were found to be consistent with a physical value for the mixing angle.

M.Ikeda | M. Hartz | K. McFarland | Y. Nagai | T. Okusawa | Y. Seiya | S. Manly | V. Berardi | S. Bron | K. Mahn | M. Catanesi | E. Radicioni | T. Yoshida | A. Shvartsman | Y. Kataoka | K. Yamamoto | A. Ereditato | D. Hadley | M. Ishitsuka | M. Kuze | L. Labarga | Y. Suzuki | T. Honjo | N. Hastings | T. Tsukamoto | P. Ratoff | P. Jonsson | S. Bolognesi | K. Abe | M. Yokoyama | T. Matsubara | M. Wascko | A. Finch | S. Roth | T. Lux | A. Suzuki | K. Nakayoshi | C. Densham | S. Cartwright | L. Thompson | T. Nakadaira | G. Christodoulou | M. Lamoureux | K. Scholberg | H. Kikutani | T. Kutter | H. Kakuno | Y. Koshio | E. Noah | D. Coplowe | X. Lu | B. Popov | L. Ludovici | G. Barr | G. Collazuol | Y. Hayato | C. Pistillo | M. Tajima | L. Eklund | T. Kobayashi | K. Tsui | B. Radics | P. Dunne | C. Yanagisawa | V. Paolone | S. Bhadra | A. Marino | Y. Takeuchi | N. McCauley | L. Kormos | D. Wark | W. Toki | S. Boyd | M. Tzanov | A. Longhin | F. Soler | T. Mueller | A. Pritchard | C. Andreopoulos | S. Aoki | G. Barker | A. Bravar | C. Bronner | A. Cervera | T. Dealtry | J. Dumarchez | Y. Fujii | Y. Fukuda | C. Giganti | M. Gonin | J. Holeczek | A. Ichikawa | A. Izmaylov | B. Jamieson | J. Kameda | E. Kearns | M. Khabibullin | A. Khotjantsev | T. Kikawa | J. Kisiel | A. Konaka | K. Kowalik | Y. Kudenko | R. Kurjata | J. Lagoda | R. P. Litchfield | L. Magaletti | K. Mavrokoridis | E. Mazzucato | C. Mcgrew | M. Mezzetto | A. Minamino | O. Mineev | S. Mine | M. Miura | S. Moriyama | M. Nakahata | K. Nakamura | S. Nakayama | T. Nakaya | J. Nowak | K. Okumura | R. A. Owen | Y. Oyama | V. Palladino | E. Rondio | K. Sakashita | F. Sánchez | M. Scott | T. Sekiguchi | H. Sekiya | M. Shiozawa | M. Smy | J. Sobczyk | H. Sobel | M. Tada | A. Takeda | C. Touramanis | Y. Uchida | M. Vagins | G. Vasseur | T. Wachala | A. Weber | R. Wendell | M. Wilking | T. Yano | N. Yershov | A. Zalewska | J. Zalipska | K. Zaremba | M. Ziembicki | M. Zito | Y. Nakajima | H. Tanaka | D. Cherdack | M. Hogan | T. Katori | C. Mauger | H. O'Keeffe | K. Wood | S. Cao | S. Dennis | S. Dolan | S. Emery-Schrenk | G. Fiorentini | M. Friend | K. Iwamoto | M. Kabirnezhad | S. King | L. Koch | T. Maruyama | A. Mefodiev | Y. Nishimura | M. Posiadała-Zezula | B. Quilain | C. Riccio | A. Rychter | C. Wilkinson | M. Yu | S. Kasetti | A. Shaikhiev | G. Yang | C. Delogu | S. Jenkins | A. Kostin | K. Niewczas | C. Alt | M. Antonova | C. Jesús-Valls | J. Pasternak | L. Pickering | D. Vargas | C. Wret | B. Bourguille | K. Fusshoeller | C. Schloesser | A. Bubak | G. Santucci | S. Suvorov | Y. Wang | L. Maret | S. Parsa | W. Shorrock | K. Skwarczynski | R. Akutsu | Y. Ashida | L. Berns | F. Nova | L. O’Sullivan | W. Parker | C. Pidcott | A. Ruggeri | Y. Sonoda | T. Towstego | J. Walker | S. Zsoldos | T. Doyle | S. Liu | A. Ali | M. Pari | A. Cudd | L. Machado | A. Sztuc | F. Iacob | T. Ishida | M. Jakkapu | Y. Nakano | K. Yasutome | D. Barrow | L. Cook | M. Malek | G. Pintaudi | J. Nugent | G. Derosa | T. Nonnenmacher | E. Atkin | P. Hamacher-Baumann | S. Valder | D. Payne | T. Vladisavljevic | A. Ali | F. Bench | C. Francois | A. Hiramoto | M. Pavin | K. Porwit | T. Radermacher | G. Zarnecki | N. Akhlaq | T. Arihara | Y. Asada | Y. Awataguchi | M. Batkiewicz-Kwasniak | A. Beloshapkin | T. Bonus | M. Cicerchia | A. Eguchi | R. Fukuda | A. Gorin | M. Guigue | N. Izumi | P. Jurj | Y. Katayama | T. Kobata | S. Kuribayashi | L. Marti-Magro | K. Matsushita | J. McElwee | L. Munteanu | A. Nakamura | C. Naseby | T. V. Ngoc | V. Q. Nguyen | T. Odagawa | T. Ogawa | R. Okada | G. Penn | C. Ruggles | A. Shaykina | Y. Tanihara | M. Tani | N. Teshima | W. Vinning | J. G. Walsh | X. Junjie | T. Hasegawa | S. Suzuki | J. Wilson | J. Coleman | D. BravoBerguno | M. BuizzaAvanzini | F. Dilodovico | S.Hassani | N. HongVan | D. L. M. Lawe | L. MolinaBueno | J. Walsh

[1]  The Super-Kamiokande Collaboration Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations , 2020 .

[2]  M. Hartz,et al.  Constraint on the Matter-Antimatter Symmetry-Violating Phase in Neutrino Oscillations. , 2019, 1910.03887.

[3]  M. Hartz,et al.  Atmospheric neutrino oscillation analysis with improved event reconstruction in Super-Kamiokande IV , 2019, Progress of Theoretical and Experimental Physics.

[4]  M. Hartz,et al.  Measurements of $$\pi ^\pm $$π±, $$K^\pm $$K± and proton double differential yields from the surface of the T2K replica target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS , 2018, The European Physical Journal C.

[5]  M. Posiadała-Zezula Recent T2K flux predictions with NA61/SHINE thin graphite target measurements , 2017 .

[6]  L. Zambelli Hadroproduction experiments to constrain accelerator-based neutrino fluxes , 2017 .

[7]  R. Gran Model Uncertainties for Valencia RPA Effect for MINERvA , 2017, 1705.02932.

[8]  M. Hartz,et al.  Updated T2K measurements of muon neutrino and antineutrino disappearance using 1.5 x 10(21) protons on target , 2017, 1704.06409.

[9]  Y. Hayato,et al.  NUISANCE: a neutrino cross-section generator tuning and comparison framework , 2016, 1612.07393.

[10]  M. Hartz,et al.  Measurements of π±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^\pm $$\end{document} differential yields from t , 2016, The European Physical Journal C.

[11]  Y. Nagai,et al.  Measurements of $$\pi ^{\pm }$$π±, $$K^{\pm }$$K±, $$K^0_S$$KS0, $$\varLambda $$Λ and proton production in proton–carbon interactions at 31 GeV/c with the NA61/SHINE spectrometer at the CERN SPS , 2015, 1510.02703.

[12]  O. Miranda,et al.  Non standard neutrino interactions: current status and future prospects , 2015, 1505.06254.

[13]  M. Shibata,et al.  Development and operational experience of magnetic horn system for T2K experiment , 2015, 1502.01737.

[14]  M. Vassiliou,et al.  Measurements of π ± , K ± , K 0 S , Λ and proton production in proton–carbon interactions at 31 GeV/ c with the NA61/SHINE spectrometer at the CERN SPS , 2015 .

[15]  M. Hartz,et al.  Measurement of the muon beam direction and muon flux for the T2K neutrino experiment , 2014, 1412.0194.

[16]  Alan D. Martin,et al.  Review of Particle Physics , 2014 .

[17]  V. Vlachoudis,et al.  The FLUKA Code: Developments and Challenges for High Energy and Medical Applications , 2014 .

[18]  A. Aurisano,et al.  Combined analysis of νμ disappearance and νμ→νe appearance in MINOS using accelerator and atmospheric neutrinos. , 2014, Physical review letters.

[19]  A.Takeda,et al.  Calibration of the Super-Kamiokande detector , 2013, 1307.0162.

[20]  Daresbury,et al.  The electromagnetic calorimeter for the T2K near detector ND280 , 2013, 1308.3445.

[21]  R. Gran,et al.  Neutrino-nucleus quasi-elastic and 2p2h interactions up to 10 GeV , 2013, 1307.8105.

[22]  A.Longhin,et al.  T2K neutrino flux prediction , 2012, 1211.0469.

[23]  T. Kutter,et al.  The T2K Side Muon Range Detector (SMRD) , 2012, 1206.3553.

[24]  Alan Kostelecky,et al.  Neutrinos with Lorentz-violating operators of arbitrary dimension , 2011, 1112.6395.

[25]  T2K Collaboration The T2K Fine-Grained Detectors , 2012, 1204.3666.

[26]  G. Palla,et al.  Measurement of Production Properties of Positively Charged Kaons in Proton-Carbon Interactions at 31 GeV/c , 2011, 1112.0150.

[27]  A. Bodek,et al.  The T2K ND280 off-axis pi–zero detector , 2011, 1111.5030.

[28]  K. Hagiwara,et al.  The earth matter effects in neutrino oscillation experiments from Tokai to Kamioka and Korea , 2011, 1107.5857.

[29]  J. Nieves,et al.  Inclusive charged-current neutrino-nucleus reactions , 2011, 1102.2777.

[30]  for the NA49 collaboration,et al.  Cross Sections and Charged Pion Spectra in Proton-Carbon Interactions at 31 GeV/c , 2011, 1102.0983.

[31]  Irvine,et al.  The T2K Experiment , 2009, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[32]  Y. Hayato A neutrino interaction simulation program library NEUT , 2009 .

[33]  L. Chaussard,et al.  Design and construction of INGRID neutrino beam monitor for the T2K neutrino experiment , 2008, 2008 IEEE Nuclear Science Symposium Conference Record.

[34]  J. Nieves,et al.  Theoretical uncertainties on quasielastic charged-current neutrino-nucleus cross sections , 2006, hep-ph/0604042.

[35]  A. Ferrari,et al.  FLUKA: A Multi-Particle Transport Code , 2005 .

[36]  J. Nieves,et al.  Erratum: Inclusive quasielastic charged-current neutrino-nucleus reactions [Phys. Rev. C 70, 055503 (2004)] , 2005 .

[37]  S. Parke,et al.  Another possible way to determine the neutrino mass hierarchy , 2005, hep-ph/0503283.

[38]  J. Nieves,et al.  Inclusive quasielastic charged-current neutrino-nucleus reactions , 2004, nucl-th/0408005.

[39]  S. Fukudaa,et al.  The Super-Kamiokande detector , 2003 .

[40]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[41]  S. Giani,et al.  GEANT Detector Description and Simulation Tool , 1994 .

[42]  Sandip Pakvasa,et al.  Matter effects on three-neutrino oscillations , 1980 .

[43]  B. Pontecorvo Neutrino Experiments and the Problem of Conservation of Leptonic Charge , 1967 .

[44]  Z. Maki,et al.  Remarks on the unified model of elementary particles , 1962 .