Enhancing hydrogen storage properties of MgH2 through addition of Ni/CoMoO4 nanorods

[1]  Z. Yao,et al.  Probing an intermediate state by X-ray absorption near-edge structure in nickel-doped 2LiBH4–MgH2 reactive hydride composite at moderate temperature , 2020 .

[2]  L. Pasquini,et al.  Interfaces within biphasic nanoparticles give a boost to magnesium-based hydrogen storage , 2020 .

[3]  Xuezhang Xiao,et al.  Insights into 2D graphene-like TiO2 (B) nanosheets as highly efficient catalyst for improved low-temperature hydrogen storage properties of MgH2 , 2020, Materials Today Energy.

[4]  Y. Liu,et al.  Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis , 2020 .

[5]  Min Zhu,et al.  Excellent catalysis of MoO3 on the hydrogen sorption of MgH2 , 2019, International Journal of Hydrogen Energy.

[6]  X. Lai,et al.  A CoMoO4–Co2Mo3O8 heterostructure with valence-rich molybdenum for a high-performance hydrogen evolution reaction in alkaline solution , 2019, Journal of Materials Chemistry A.

[7]  Chenghua Sun,et al.  Novel 1D carbon nanotubes uniformly wrapped nanoscale MgH2 for efficient hydrogen storage cycling performances with extreme high gravimetric and volumetric capacities , 2019, Nano Energy.

[8]  H. Pan,et al.  In situ formed ultrafine NbTi nanocrystals from a NbTiC solid-solution MXene for hydrogen storage in MgH2 , 2019, Journal of Materials Chemistry A.

[9]  Xuezhang Xiao,et al.  Highly dispersed metal nanoparticles on TiO2 acted as nano redox reactor and its synergistic catalysis on the hydrogen storage properties of magnesium hydride , 2019, International Journal of Hydrogen Energy.

[10]  Yunhao Lu,et al.  Synergistic catalysis in monodispersed transition metal oxide nanoparticles anchored on amorphous carbon for excellent low-temperature dehydrogenation of magnesium hydride , 2019, Materials Today Energy.

[11]  Yunhao Lu,et al.  Excellent catalysis of TiO2 nanosheets with high-surface-energy {001} facets on the hydrogen storage properties of MgH2. , 2019, Nanoscale.

[12]  B. Xiao,et al.  A striking catalytic effect of facile synthesized ZrMn2 nanoparticles on the de/rehydrogenation properties of MgH2 , 2019, Journal of Materials Chemistry A.

[13]  Shuchun Zhao,et al.  Facile synthesis of Co/Pd supported by few-walled carbon nanotubes as an efficient bidirectional catalyst for improving the low temperature hydrogen storage properties of magnesium hydride , 2019, Journal of Materials Chemistry A.

[14]  Shuchun Zhao,et al.  ZIF-67 derived Co@CNTs nanoparticles: Remarkably improved hydrogen storage properties of MgH2 and synergetic catalysis mechanism , 2019, International Journal of Hydrogen Energy.

[15]  W. Ding,et al.  Hydrogen storage properties of nanocrystalline Mg2Ni prepared from compressed 2MgH2Ni powder , 2018, International Journal of Hydrogen Energy.

[16]  Xiulin Fan,et al.  Synergistic Catalytic Activity of Porous Rod-like TMTiO3 (TM = Ni and Co) for Reversible Hydrogen Storage of Magnesium Hydride , 2018, The Journal of Physical Chemistry C.

[17]  Jianhua Yao,et al.  Enhanced hydrogen storage properties of MgH 2 catalyzed with carbon-supported nanocrystalline TiO 2 , 2018, Journal of Power Sources.

[18]  H. Pan,et al.  Vanadium oxide nanoparticles supported on cubic carbon nanoboxes as highly active catalyst precursors for hydrogen storage in MgH2 , 2018 .

[19]  Yunfeng Zhu,et al.  Remarkable Synergistic Catalysis of Ni-Doped Ultrafine TiO2 on Hydrogen Sorption Kinetics of MgH2. , 2018, ACS applied materials & interfaces.

[20]  Jun Lu,et al.  Batteries and fuel cells for emerging electric vehicle markets , 2018 .

[21]  Cheol‐Min Park,et al.  Enhancement of hydrogen sorption properties of MgH2 with a MgF2 catalyst , 2017 .

[22]  Min Zhu,et al.  Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications , 2017 .

[23]  L. Pasquini,et al.  Hydrogen Desorption Below 150 °C in MgH2–TiH2 Composite Nanoparticles: Equilibrium and Kinetic Properties , 2017 .

[24]  Kondo‐François Aguey‐Zinsou,et al.  Can γ-MgH2 improve the hydrogen storage properties of magnesium? , 2017 .

[25]  Kasper T. Møller,et al.  Hydrogen - A sustainable energy carrier , 2017 .

[26]  Xiulin Fan,et al.  Transition metal (Co, Ni) nanoparticles wrapped with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride. , 2017, Physical chemistry chemical physics : PCCP.

[27]  Fang Fang,et al.  Graphene-wrapped reversible reaction for advanced hydrogen storage , 2016 .

[28]  Zaiping Guo,et al.  Monodisperse Magnesium Hydride Nanoparticles Uniformly Self‐Assembled on Graphene , 2015, Advanced materials.

[29]  Lifang Jiao,et al.  Bimetallic NiCo functional graphene: an efficient catalyst for hydrogen-storage properties of MgH₂. , 2014, Chemistry, an Asian journal.

[30]  Min Zhu,et al.  Mg–TM (TM: Ti, Nb, V, Co, Mo or Ni) core–shell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism , 2014 .

[31]  B. Liu,et al.  Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications. , 2013, ACS applied materials & interfaces.

[32]  M. Allendorf,et al.  Nanoconfined light metal hydrides for reversible hydrogen storage , 2013 .

[33]  M. Hirscher,et al.  Confinement of MgH2 nanoclusters within nanoporous aerogel scaffold materials. , 2009, ACS nano.

[34]  V. Utgikar,et al.  Transition to hydrogen economy in the United States: A 2006 status report , 2007 .

[35]  Young Whan Cho,et al.  Improvement in hydrogen sorption kinetics of MgH2 with Nb hydride catalyst , 2007 .

[36]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[37]  G. Frenking,et al.  The Nature of the Transition Metal–Carbonyl Bond and the Question about the Valence Orbitals of Transition Metals. A Bond Energy Decomposition Analysis of TM(CO)6q (TMq = Hf2–, Ta1–, W0, Re1+, Os2+, Ir3+) , 2000 .

[38]  H. E. Kissinger Reaction Kinetics in Differential Thermal Analysis , 1957 .

[39]  Kondo‐François Aguey‐Zinsou,et al.  Tailoring magnesium based materials for hydrogen storage through synthesis: Current state of the art , 2018 .