Recurrent SMARCB1 Mutations Reveal a Nucleosome Acidic Patch Interaction Site That Potentiates mSWI/SNF Complex Chromatin Remodeling

[1]  M. Shokhirev,et al.  Heterozygous Mutations in SMARCA2 Reprogram the Enhancer Landscape by Global Retargeting of SMARCA4. , 2019, Molecular cell.

[2]  Michael B. Stadler,et al.  Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors , 2019, Nature.

[3]  A. Shilatifard,et al.  The ATPase module of mammalian SWI/SNF family complexes mediates subcomplex identity and catalytic activity-independent genomic targeting , 2019, Nature Genetics.

[4]  J. Ranish,et al.  Modular Organization and Assembly of SWI/SNF Family Chromatin Remodeling Complexes , 2018, Cell.

[5]  C. Lareau,et al.  A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation , 2018, Nature Cell Biology.

[6]  G. Santen,et al.  First data from a parent‐reported registry of 81 individuals with Coffin–Siris syndrome: Natural history and management recommendations , 2018, American journal of medical genetics. Part A.

[7]  B. Wollnik,et al.  Mutational Landscapes and Phenotypic Spectrum of SWI/SNF-Related Intellectual Disability Disorders , 2018, Front. Mol. Neurosci..

[8]  T. Kleefstra,et al.  A recurrent de novo missense pathogenic variant in SMARCB1 causes severe intellectual disability and choroid plexus hyperplasia with resultant hydrocephalus , 2018, Genetics in Medicine.

[9]  Aviad Tsherniak,et al.  Interrogation of Mammalian Protein Complex Structure, Function, and Membership Using Genome-Scale Fitness Screens. , 2018, Cell systems.

[10]  Wai Lim Ku,et al.  SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters , 2017, Nature Genetics.

[11]  Tran Tuoc,et al.  Chromatin Remodeling BAF (SWI/SNF) Complexes in Neural Development and Disorders , 2017, Front. Mol. Neurosci..

[12]  Katharine L. Diehl,et al.  ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference , 2017, Nature.

[13]  Xueming Li,et al.  Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure , 2017, Nature.

[14]  J. Ranish,et al.  Loss of Snf5 Induces Formation of an Aberrant SWI/SNF Complex. , 2017, Cell reports.

[15]  Mihaela E. Sardiu,et al.  Composition and Function of Mutant Swi/Snf Complexes. , 2017, Cell reports.

[16]  Mingming Jia,et al.  COSMIC: somatic cancer genetics at high-resolution , 2016, Nucleic Acids Res..

[17]  Shawn M. Gillespie,et al.  SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation , 2016, Nature Genetics.

[18]  J. Rothberg,et al.  Impaired Mitochondrial Dynamics and Mitophagy in Neuronal Models of Tuberous Sclerosis Complex. , 2016, Cell reports.

[19]  Itay Mayrose,et al.  ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules , 2016, Nucleic Acids Res..

[20]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[21]  Nathan C. Sheffield,et al.  LOLA: enrichment analysis for genomic region sets and regulatory elements in R and Bioconductor , 2015, Bioinform..

[22]  L. Vissers,et al.  Genetic studies in intellectual disability and related disorders , 2015, Nature Reviews Genetics.

[23]  Gwendolyn M. Jang,et al.  Meta- and Orthogonal Integration of Influenza "OMICs" Data Defines a Role for UBR4 in Virus Budding. , 2015, Cell host & microbe.

[24]  M. Bycroft,et al.  The SWI/SNF Subunit INI1 Contains an N-Terminal Winged Helix DNA Binding Domain that Is a Target for Mutations in Schwannomatosis , 2015, Structure.

[25]  G. Crabtree,et al.  Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics , 2015, Science Advances.

[26]  Michael J. Ziller,et al.  Transcription factor binding dynamics during human ESC differentiation , 2015, Nature.

[27]  Howard Y. Chang,et al.  ATAC‐seq: A Method for Assaying Chromatin Accessibility Genome‐Wide , 2015, Current protocols in molecular biology.

[28]  J. Carey,et al.  Coffin–Siris syndrome and related disorders involving components of the BAF (mSWI/SNF) complex: Historical review and recent advances using next generation sequencing , 2014, American journal of medical genetics. Part C, Seminars in medical genetics.

[29]  N. Matsumoto,et al.  Numerous BAF complex genes are mutated in Coffin–Siris syndrome , 2014, American journal of medical genetics. Part C, Seminars in medical genetics.

[30]  N. Okamoto,et al.  Genotype‐phenotype correlation of Coffin‐Siris syndrome caused by mutations in SMARCB1, SMARCA4, SMARCE1, and ARID1A , 2014, American journal of medical genetics. Part C, Seminars in medical genetics.

[31]  A. Patnaik,et al.  Coffin-Siris syndrome with the rarest constellation of congenital cardiac defects: A case report with review of literature , 2014, Annals of pediatric cardiology.

[32]  Zhiping Weng,et al.  ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers , 2014, Bioinform..

[33]  N. Matsumoto,et al.  Coffin–Siris syndrome is a SWI/SNF complex disorder , 2014, Clinical genetics.

[34]  Jessica K. Gagnon,et al.  Autodeubiquitination protects the tumor suppressor BAP1 from cytoplasmic sequestration mediated by the atypical ubiquitin ligase UBE2O. , 2014, Molecular cell.

[35]  Eric Nestler,et al.  ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases , 2014, BMC Genomics.

[36]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[37]  K. Devriendt,et al.  A comprehensive molecular study on Coffin-Siris and Nicolaides-Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling. , 2013, Human molecular genetics.

[38]  A. V. Vulto-van Silfhout,et al.  Coffin–Siris Syndrome and the BAF Complex: Genotype–Phenotype Study in 63 Patients , 2013, Human mutation.

[39]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[40]  T. Südhof,et al.  Rapid Single-Step Induction of Functional Neurons from Human Pluripotent Stem Cells , 2013, Neuron.

[41]  G. Crabtree,et al.  Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy , 2013, Nature Genetics.

[42]  Wei Wu,et al.  From neural development to cognition: unexpected roles for chromatin , 2013, Nature Reviews Genetics.

[43]  G. Crabtree,et al.  Reversible Disruption of mSWI/SNF (BAF) Complexes by the SS18-SSX Oncogenic Fusion in Synovial Sarcoma , 2013, Cell.

[44]  David Haussler,et al.  The UCSC genome browser and associated tools , 2012, Briefings Bioinform..

[45]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[46]  H. van Attikum,et al.  SWI/SNF complex in disorder , 2012, Epigenetics.

[47]  Christian Gilissen,et al.  Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability. , 2012, American journal of human genetics.

[48]  Christian Gilissen,et al.  Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syndrome , 2012, Nature Genetics.

[49]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[50]  Tadashi Kaname,et al.  New from NPG , 2012, Nature Medicine.

[51]  Gerhard Wagner,et al.  Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling , 2012, Journal of Biomolecular NMR.

[52]  S. Haggarty,et al.  Epigenetic Characterization of the FMR1 Gene and Aberrant Neurodevelopment in Human Induced Pluripotent Stem Cell Models of Fragile X Syndrome , 2011, PloS one.

[53]  C. Cole,et al.  COSMIC: the catalogue of somatic mutations in cancer , 2011, Genome Biology.

[54]  Mingming Jia,et al.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer , 2010, Nucleic Acids Res..

[55]  Marcos J. Araúzo-Bravo,et al.  Chromatin-Remodeling Components of the BAF Complex Facilitate Reprogramming , 2010, Cell.

[56]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[57]  Cory Y. McLean,et al.  GREAT improves functional interpretation of cis-regulatory regions , 2010, Nature Biotechnology.

[58]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[59]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[60]  David S. Lapointe,et al.  ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data , 2010, BMC Bioinformatics.

[61]  A. Bax,et al.  TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts , 2009, Journal of biomolecular NMR.

[62]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[63]  B. Cairns,et al.  The biology of chromatin remodeling complexes. , 2009, Annual review of biochemistry.

[64]  Peter Güntert,et al.  Automated structure determination from NMR spectra , 2009, European Biophysics Journal.

[65]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[66]  C. Peterson,et al.  Architecture of the SWI/SNF-Nucleosome Complex , 2008, Molecular and Cellular Biology.

[67]  D. Wagner,et al.  Unwinding chromatin for development and growth: a few genes at a time. , 2007, Trends in genetics : TIG.

[68]  Korbinian Strimmer,et al.  Statistical Applications in Genetics and Molecular Biology , 2005 .

[69]  K. Luger,et al.  The Nucleosomal Surface as a Docking Station for Kaposi's Sarcoma Herpesvirus LANA , 2006, Science.

[70]  I. Verma,et al.  Production and purification of lentiviral vectors , 2006, Nature Protocols.

[71]  K. Strimmer,et al.  Statistical Applications in Genetics and Molecular Biology A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics , 2011 .

[72]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[73]  R. Keller Optimizing the process of nuclear magnetic resonance spectrum analysis and computer aided resonance assignment , 2005 .

[74]  Nathan A. Baker,et al.  PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations , 2004, Nucleic Acids Res..

[75]  Charles D Schwieters,et al.  The Xplor-NIH NMR molecular structure determination package. , 2003, Journal of magnetic resonance.

[76]  T. Richmond,et al.  Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. , 2002, Journal of molecular biology.

[77]  Clay Bracken,et al.  A method for efficient isotopic labeling of recombinant proteins , 2001, Journal of biomolecular NMR.

[78]  A. Deimling,et al.  INI1 mutations in meningiomas at a potential hotspot in exon 9 , 2001, British Journal of Cancer.

[79]  R. Kingston,et al.  Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. , 1999, Molecular cell.

[80]  B. Chait,et al.  Subunits of the Yeast SWI/SNF Complex Are Members of the Actin-related Protein (ARP) Family* , 1998, The Journal of Biological Chemistry.

[81]  Olivier Delattre,et al.  Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer , 1998, Nature.

[82]  J. Workman,et al.  Alteration of nucleosome structure as a mechanism of transcriptional regulation. , 1998, Annual review of biochemistry.

[83]  M. Waye,et al.  Characterization of nucleosome core particles containing histone proteins made in bacteria. , 1997, Journal of molecular biology.

[84]  G. Crabtree,et al.  Diversity and specialization of mammalian SWI/SNF complexes. , 1996, Genes & development.

[85]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[86]  G. Crabtree,et al.  Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. , 1994, Science.

[87]  B. Cairns,et al.  A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. , 1994, Proceedings of the National Academy of Sciences of the United States of America.