NICMOS measurements of the near-infrared background

We present initial results of an ESO-VLT large programme (AMAZE) aimed at determining the evolution of the mass-metallicity relation at z > 3 by means of deep near-IR spectroscopy. Gas metallicities are measured, for an initial sample of nine star forming galaxies at z ∼ 3.5, by means of optical nebular lines redshifted into the near-IR. Stellar masses are accurately determined by using Spitzer-IRAC data, which sample the rest-frame near-IR stellar light in these distant galaxies. When compared with previous surveys, the mass-metallicity relation inferred at z ∼ 3.5 shows an evolution much stronger than observed at lower redshifts. The evolution is prominent even in massive galaxies, indicating that z ∼ 3 is an epoch of major action in terms of star formation and metal enrichment also for massive systems. There are also indications that the metallicity evolution of low mass galaxies is stronger relative to high mass systems, an effect which can be considered the chemical version of the galaxy downsizing. The mass-metallicity relation observed at z ∼ 3. 5i s difficult to reconcile with the predictions of some hierarchical evolutionary models. Such discrepancies suggest that at z > 3 galaxies are assembled mostly with relatively un-evolved sub-units, i.e. small galaxies with low star formation efficiency. The bulk of the star formation and metallicity evolution probably occurs once small galaxies are already assembled into bigger systems.

[1]  M. Bershady,et al.  FORMATION AND EVOLUTION OF GALAXY DISKS , 2008 .

[2]  A. Heavens,et al.  The cosmic evolution of metallicity from the SDSS fossil record , 2008, 0804.3091.

[3]  E. al.,et al.  The Optical Spectra of 24 μm Galaxies in the COSMOS Field. I. Spitzer MIPS Bright Sources in the zCOSMOS-Bright 10k Catalog , 2008, 0803.1002.

[4]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[5]  J. Brinchmann,et al.  Metallicities and Physical Conditions in Star-forming Galaxies at z ~ 1.0-1.5 , 2008, 0801.1670.

[6]  A. McConnachie,et al.  Clues to the Origin of the Mass-Metallicity Relation: Dependence on Star Formation Rate and Galaxy Size , 2007, 0711.4833.

[7]  G. Rieke,et al.  The Stellar Mass Assembly of Galaxies from z = 0 to z = 4: Analysis of a Sample Selected in the Rest-Frame Near-Infrared with Spitzer , 2007, 0709.1354.

[8]  S. Veilleux,et al.  The Oxygen Abundances of Luminous and Ultraluminous Infrared Galaxies , 2007, 0708.1766.

[9]  China.,et al.  The direct oxygen abundances of metal-rich galaxies derived from electron temperature (Corrigendum) , 2007, 0708.1648.

[10]  J. P. Torres-Papaqui,et al.  The history of star-forming galaxies in the Sloan Digital Sky Survey , 2007, 0707.3578.

[11]  R. Kudritzki,et al.  VLT Spectroscopy of Blue Supergiants in IC 1613 , 2007, 0707.2881.

[12]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-Ray Selected Active Galactic Nuclei in the XMM-Newton Medium Deep Survey , 2007 .

[13]  Mark Dickinson,et al.  Multiwavelength Constraints on the Cosmic Star Formation History from Spectroscopy: The Rest-Frame Ultraviolet, Hα, and Infrared Luminosity Functions at Redshifts 1.9 ≲ z ≲ 3.4 , 2007, 0706.4091.

[14]  G. Zamorani,et al.  Unveiling Obscured Accretion in the Chandra Deep Field-South , 2007, 0705.2864.

[15]  D. M. Alexander,et al.  Multiwavelength Study of Massive Galaxies at z ~ 2. II. Widespread Compton-thick Active Galactic Nuclei and the Concurrent Growth of Black Holes and Bulges , 2007, 0705.2832.

[16]  G. Meylan,et al.  The Sextet Arcs: A Strongly Lensed Lyman Break Galaxy in the ACS Spectroscopic Galaxy Survey toward Abell 1689 , 2007, 0704.3597.

[17]  R. Davé,et al.  The origin of the galaxy mass-metallicity relation and implications for galactic outflows , 2007, 0704.3100.

[18]  J. Brinchmann,et al.  The VIMOS VLT Deep Survey. The assembly history of the stellar mass in galaxies: from the young to t , 2007, 0704.1600.

[19]  G. Zamorani,et al.  The HELLAS2XMM survey X. The bolometric output of luminous obscured quasars: The Spitzer perspective , 2007, 0704.0735.

[20]  A. Fontana,et al.  A comparison of LBGs, DRGs, and BzK galaxies: their contribution to the stellar mass density in the GOODS-MUSIC sample , 2007 .

[21]  J. Prochaska,et al.  On the Nature of Velocity Fields in High-z Galaxies , 2007, astro-ph/0703701.

[22]  Iap,et al.  The missing metals problem – III. How many metals are expelled from galaxies? , 2007, astro-ph/0703509.

[23]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-ray selected AGNs in the XMDS Survey , 2007, astro-ph/0703255.

[24]  R. Davies,et al.  A method to remove residual OH emission from near-infrared spectra , 2007 .

[25]  P. Kroupa,et al.  A Possible Origin of the Mass–Metallicity Relation of Galaxies , 2006, Proceedings of the International Astronomical Union.

[26]  J. P. Torres-Papaqui,et al.  Uncovering the chemical enrichment and mass-assembly histories of star-forming galaxies , 2006, astro-ph/0610815.

[27]  F. Bresolin The Oxygen Abundance in the Inner H II Regions of M101: Implications for the Calibration of Strong-Line Metallicity Indicators , 2006, astro-ph/0610690.

[28]  Portugal,et al.  Empirical strong-line oxygen abundance calibrations from galaxies with electron temperature measurements , 2006, astro-ph/0610068.

[29]  P. François,et al.  Abundance gradients in the Milky Way for α elements, iron peak elements, barium, lanthanum, and europium , 2006, astro-ph/0609813.

[30]  K. Tassis,et al.  Scaling Relations of Dwarf Galaxies without Supernova-driven Winds , 2006, Proceedings of the International Astronomical Union.

[31]  G. Stinson,et al.  The Origin and Evolution of the Mass-Metallicity Relationship for Galaxies: Results from Cosmological N-Body Simulations , 2006, astro-ph/0609620.

[32]  P. Tissera,et al.  Clues for the origin of the fundamental metallicity relations – I. The hierarchical building up of the structure , 2006, astro-ph/0609243.

[33]  Monteporzio,et al.  The Galaxy Mass Function up to z=4 in the GOODS-MUSIC sample: into the epoch of formation of massive galaxies ⋆ , 2006, astro-ph/0609068.

[34]  J. Dalcanton The Metallicity of Galaxy Disks: Infall versus Outflow , 2006, astro-ph/0608590.

[35]  F. Bresolin Measuring Chemical Abundances in Extragalactic Metal-Rich HII Regions , 2006, astro-ph/0608410.

[36]  Romeel Dav'eBenjamin D. Oppenheimer The enrichment history of baryons in the Universe , 2006, astro-ph/0608268.

[37]  R. Bender,et al.  Lyman Break Galaxies under a Microscope: The Small-Scale Dynamics and Mass of an Arc in the Cluster 1E 0657–56 , 2006, astro-ph/0606527.

[38]  P. Petitjean,et al.  Velocity-metallicity correlation for high-z DLA galaxies: evidence of a mass-metallicity relation? , 2006, astro-ph/0606185.

[39]  R. Kudritzki,et al.  The Araucaria Project: VLT Spectra of Blue Supergiants in WLM— Classification and First Abundances , 2006, astro-ph/0605640.

[40]  Porto,et al.  Ages and metallicities of early-type galaxies in the SDSS: new insight into the physical origin of the colour-magnitude and the Mg2-sigmaV relations , 2006, astro-ph/0605300.

[41]  T. Heckman,et al.  Medium-resolution spectroscopy of galaxies with redshifts 2.3 $< z <$ 3.5 , 2006, astro-ph/0605081.

[42]  M. Jarvis,et al.  A population of high-redshift type-2 quasars-I. Selection Criteria and Optical Spectra , 2006, astro-ph/0604382.

[43]  S. White,et al.  Simulations of Cosmic Chemical Enrichment , 2006, Proceedings of the International Astronomical Union.

[44]  C. Steidel,et al.  The Stellar, Gas, and Dynamical Masses of Star-forming Galaxies at z ~ 2 , 2006, astro-ph/0604041.

[45]  R. Abuter,et al.  SINFONI Integral Field Spectroscopy of z ~ 2 UV-selected Galaxies: Rotation Curves and Dynamical Evolution , 2006, astro-ph/0603559.

[46]  R. Maiolino,et al.  Gas metallicity diagnostics in star-forming galaxies , 2006, astro-ph/0603580.

[47]  Dimitra Rigopoulou,et al.  Infrared Power-Law Galaxies in the Chandra Deep Field-South: Active Galactic Nuclei and Ultraluminous Infrared Galaxies , 2006 .

[48]  A. Fontana,et al.  The GOODS-MUSIC sample: a multicolour catalog of near-IR selected galaxies in the GOODS-South field , , 2006, astro-ph/0603094.

[49]  Fabio Governato,et al.  Forming disc galaxies in ΛCDM simulations , 2006 .

[50]  D. Shupe,et al.  Chandra and Spitzer Unveil Heavily Obscured Quasars in the Chandra/SWIRE Survey , 2006, astro-ph/0602228.

[51]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[52]  M. Nonino,et al.  Cosmic evolution of the galaxy's mass and luminosity functions by morphological type from multi-wavelength data in the CDF-South , 2006, astro-ph/0601003.

[53]  Eső,et al.  The missing metals problem: II. How many metals are in z ~ 2.2 galaxies? , 2005, astro-ph/0511698.

[54]  C. Carollo,et al.  Oxygen Gas Abundances at z~1.4: Implications for the Chemical Evolution History of Galaxies , 2005, astro-ph/0511255.

[55]  C. Chiappini,et al.  The Outside-In Formation of Elliptical Galaxies , 2005, astro-ph/0510556.

[56]  France.,et al.  Significant evolution of the stellar mass-metallicity relation since z ~ 0.65 , 2005, astro-ph/0509866.

[57]  R. Bender,et al.  Specific Star Formation Rates to Redshift 5 from the FORS Deep Field and the GOODS-S Field , 2005, astro-ph/0509197.

[58]  A. Coil,et al.  Chemical Abundances of DEEP2 Star-forming Galaxies at z~1.0-1.5 , 2005, astro-ph/0509102.

[59]  P. Tissera,et al.  Fingerprints of the hierarchical building-up of the structure on the mass-metallicity relation , 2005, astro-ph/0508680.

[60]  H.-W. Chen,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .

[61]  M. Carollo,et al.  Near-Infrared Spectroscopy of 0.4 < z < 1.0 CFRS Galaxies: Oxygen Abundances, SFRs, and Dust , 2005, astro-ph/0508239.

[62]  C. Steidel,et al.  Zn and Cr Abundances in Damped Lyman Alpha Systems from the CORALS Survey , 2005, Proceedings of the International Astronomical Union.

[63]  G. Stasińska Biases in abundance derivations for metal-rich nebulae , 2005, astro-ph/0501574.

[64]  R. Maiolino,et al.  The optical-to-radio spectral energy distributions of low-metallicity blue compact dwarf galaxies , 2005, astro-ph/0501188.

[65]  J. Brinkmann,et al.  Active Galactic Nuclei in the Sloan Digital Sky Survey. I. Sample Selection , 2005, astro-ph/0501059.

[66]  I. Hook,et al.  Cosmic Star Formation History and Its Dependence on Galaxy Stellar Mass , 2004, astro-ph/0411775.

[67]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[68]  S. M. Fall,et al.  Hubble Space Telescope Observations of Element Abundances in Low-Redshift Damped Lyα Galaxies and Implications for the Global Metallicity-Redshift Relation , 2004, astro-ph/0409234.

[69]  L. Kewley,et al.  Metallicities of 0.3 < z < 1.0 Galaxies in the GOODS-North Field , 2004, astro-ph/0408128.

[70]  C. Leitherer,et al.  Spectral Modeling of Star-forming Regions in the Ultraviolet: Stellar Metallicity Diagnostics for High-Redshift Galaxies , 2004, astro-ph/0407296.

[71]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[72]  C. Steidel,et al.  Evidence for Solar Metallicities in Massive Star-forming Galaxies at z ≳ 2 , 2004, astro-ph/0405187.

[73]  F. Bresolin,et al.  The First Measured Electron Temperatures for Metal-rich H II Regions in M51 , 2004 .

[74]  A. Cimatti,et al.  Metal Enrichment in Near-Infrared Luminous Galaxies at z ~ 2: Signatures of Proto-elliptical Galaxies? , 2004, astro-ph/0404029.

[75]  H. Hippelein,et al.  The metallicity-luminosity relation at medium redshift based on faint CADIS emission line galaxies , 2004, astro-ph/0402048.

[76]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[77]  N. Vogt,et al.  The DEEP Groth Strip Survey. VII. The Metallicity of Field Galaxies at 0.26 < z < 0.82 and the Evolution of the Luminosity-Metallicity Relation , 2003, astro-ph/0310346.

[78]  Simon D. M. White,et al.  Chemical enrichment of the intracluster and intergalactic medium in a hierarchical galaxy formation model , 2003, astro-ph/0310268.

[79]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[80]  G. Granato,et al.  A Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts , 2003, astro-ph/0307202.

[81]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[82]  S. Djorgovski,et al.  The Age-Metallicity Relation of the Universe in Neutral Gas: The First 100 Damped Lyα Systems , 2003, astro-ph/0305314.

[83]  F. Bresolin,et al.  The Composition Gradient in M101 Revisited. II. Electron Temperatures and Implications for the Nebular Abundance Scale , 2003, astro-ph/0303452.

[84]  Norbert N. Hubin,et al.  SINFONI - Integral field spectroscopy at 50 milli-arcsecond resolution with the ESO VLT , 2003, SPIE Astronomical Telescopes + Instrumentation.

[85]  Henry C. Ferguson,et al.  The Evolution of the Global Stellar Mass Density at 0 < z < 3 , 2002, astro-ph/0212242.

[86]  N. Benı́tez,et al.  Spectral Evidence for Widespread Galaxy Outflows at z > 4 , 2001, astro-ph/0112095.

[87]  C. Steidel,et al.  New Observations of the Interstellar Medium in the Lyman Break Galaxy MS 1512–cB58 , 2001, astro-ph/0110637.

[88]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[89]  L. Pilyugin Oxygen abundances in dwarf irregular galaxies and the metallicity-luminosity relationship , 2001, astro-ph/0105360.

[90]  J. Cuby,et al.  The Rest-Frame Optical Spectra of Lyman Break Galaxies: Star Formation, Extinction, Abundances, and Kinematics , 2001, astro-ph/0102456.

[91]  C. Chiappini,et al.  Abundance Gradients and the Formation of the Milky Way , 2001, astro-ph/0102134.

[92]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[93]  H. Kobulnicky,et al.  Near-Infrared Spectroscopy of Two Galaxies at z = 2.3 and z = 2.9: New Probes of Chemical and Dynamical Evolution at High Redshift , 2000, astro-ph/0008242.

[94]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[95]  A. Pickles A Stellar Spectral Flux Library: 1150–25000 Å , 1998 .

[96]  R. Terlevich,et al.  New diagnostic methods for emission-line galaxies in deep surveys , 1997, astro-ph/9706016.

[97]  J. Huchra,et al.  Extragalactic Globular Clusters. III. Metallicity Comparisons and Anomalies , 1991 .

[98]  R. Kennicutt,et al.  Oxygen Abundances in Nearby Dwarf Irregular Galaxies , 1989 .

[99]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[100]  D. Garnett,et al.  Composition gradient across M81 , 1987 .

[101]  S. Veilleux,et al.  Spectral Classification of Emission-Line Galaxies , 1986 .

[102]  Rodger I. Thompson,et al.  NICMOS measurements of the near-infrared background , 2007 .

[103]  R. Bender,et al.  The Munich Near-Infrared Cluster Survey (MUNICS). VI. The Stellar Masses of K-Band-selected Field Galaxies to z ~ 1.2 , 2004 .

[104]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003 .

[105]  J. Dingwell,et al.  ApJ, in press , 1999 .

[106]  G. Rieke,et al.  Correction of the atmospheric transmission in infrared spectroscopy , 1996 .

[107]  M. Dopita,et al.  Spectral Signatures of Fast Shocks. I. Low-Density Model Grid , 1996 .

[108]  J. Huchra,et al.  H II regions and the abundance properties of spiral galaxies , 1994 .

[109]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .