On complex dynamics from reversible cellular automata

Complexity has been a recurrent research topic in cellular automata because they represent systems where complex behaviors emerge from simple local interactions. A significant amount of previous research has been conducted proposing instances of complex cellular automata; however, most of the proposed methods are based on a careful search or a meticulous construction of evolution rules. This paper presents the emergence of complex behaviors based on reversible cellular automata. In particular, this paper shows that reversible cellular automata represent an adequate framework to obtain complex behaviors adding only new random states. Experimental results show that complexity can be obtained from reversible cellular automata appending a proportion of about two times more states at random than the original number of states in the reversible automaton. Thus, it is possible to obtain complex cellular automata with dozens of states. Complexity appears to be commonly obtained from reversible cellular automata, and using other operations such as permutations of states or row and column permutations in the evolution rule. The relevance of this paper is to present that reversibility can be a useful structure to implement complex behaviors in cellular automata.

[1]  Henryk Fuk's Minimal entropy approximation for cellular automata , 2014 .

[2]  Mohammad Majid al-Rifaie,et al.  Analysis of information gain and Kolmogorov complexity for structural evaluation of cellular automata configurations , 2016, Connect. Sci..

[3]  Sebastian Risi,et al.  CA-NEAT: Evolved Compositional Pattern Producing Networks for Cellular Automata Morphogenesis and Replication , 2018, IEEE Transactions on Cognitive and Developmental Systems.

[4]  Junbiao Guan,et al.  Complex Dynamics in Elementary Cellular Automaton Rule 26 , 2015, J. Cell. Autom..

[5]  Eric Goles Ch.,et al.  On the complexity of two-dimensional signed majority cellular automata , 2018, J. Comput. Syst. Sci..

[6]  Enrico Formenti,et al.  Multidimensional cellular automata: closing property, quasi-expansivity, and (un)decidability issues , 2014, Theor. Comput. Sci..

[7]  A. D. Ramos,et al.  Convergence Time and Phase Transition in a Non-monotonic Family of Probabilistic Cellular Automata , 2017 .

[8]  A. Salcido,et al.  Exact results of 1D traffic cellular automata: The low-density behavior of the Fukui-Ishibashi model , 2018 .

[9]  M. Mézard,et al.  Journal of Statistical Mechanics: Theory and Experiment , 2011 .

[10]  Eric Goles Ch.,et al.  Shift-equivalence of k-ary, one-dimensional cellular automata rules , 2018, Commun. Nonlinear Sci. Numer. Simul..

[11]  Fangyue Chen,et al.  Chaotic properties of elementary cellular automata with majority memory , 2018 .

[12]  E Estevez-Rams,et al.  Lempel-Ziv complexity analysis of one dimensional cellular automata. , 2015, Chaos.

[13]  Enrico Formenti,et al.  More Decision Algorithms for Global Properties of 1D Cellular Automata , 2018, J. Cell. Autom..

[14]  Jarkko Kari Reversible Cellular Automata: From Fundamental Classical Results to Recent Developments , 2018, New Generation Computing.

[15]  Nazim Fatès,et al.  Local structure approximation as a predictor of second-order phase transitions in asynchronous cellular automata , 2015, Natural Computing.

[16]  Lijun Zhang,et al.  Generalized Reversibility of Topological Dynamical Systems and Cellular Automata , 2015, J. Cell. Autom..

[17]  Dmitry A. Zaitsev Simulating Cellular Automata by Infinite Petri Nets , 2018, J. Cell. Autom..

[18]  Avishy Carmi,et al.  Complexity Steering in Cellular Automata , 2018, Complex Syst..

[19]  James P. Crutchfield,et al.  Computational mechanics of cellular automata: an example , 1997 .

[20]  Juan Carlos Seck Tuoh Mora,et al.  Gliders in Rule 110 , 2006, Int. J. Unconv. Comput..

[21]  Chih-Hung Chang,et al.  Some Ergodic Properties of One-Dimensional Invertible Cellular Automata , 2016, J. Cell. Autom..

[22]  Benjamin Hellouin de Menibus,et al.  Characterisation of Limit Measures of Higher-Dimensional Cellular Automata , 2015, Theory of Computing Systems.

[23]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[24]  J. R. G. Mendonça,et al.  A probabilistic cellular automata model for the dynamics of a population driven by logistic growth and weak Allee effect , 2017 .

[25]  Genaro Juárez Martínez,et al.  On the Representation of Gliders in Rule 54 by De Bruijn and Cycle Diagrams , 2008, ACRI.

[26]  Stephen Wolfram,et al.  Cellular automata as models of complexity , 1984, Nature.

[27]  Chao Liu,et al.  Chaotic Behaviors of Symbolic Dynamics about Rule 58 in Cellular Automata , 2014 .

[28]  Georg Jäger,et al.  Using Elementary Cellular Automata to Model Different Research Strategies and the Generation of New Knowledge , 2018, Complex Syst..

[29]  Guillaume Theyssier,et al.  μ-Limit sets of cellular automata from a computational complexity perspective , 2015, J. Comput. Syst. Sci..

[30]  Kenichi Morita,et al.  Computation in reversible cellular automata , 2012, Int. J. Gen. Syst..

[31]  Weibin Liu,et al.  Topological entropy of periodic coven cellular automata , 2016 .

[32]  Juan Carlos Seck Tuoh Mora,et al.  Welch sets for random generation and representation of reversible one-dimensional cellular automata , 2017, Inf. Sci..

[33]  Vladimir Garc'ia-Morales,et al.  Diagrammatic approach to cellular automata and the emergence of form with inner structure , 2016, Commun. Nonlinear Sci. Numer. Simul..

[34]  Juan Carlos Seck Tuoh Mora,et al.  Phenomenology of Reaction-diffusion Binary-State Cellular Automata , 2006, Int. J. Bifurc. Chaos.

[35]  Jean-Jacques Chabrier,et al.  Research of Complex Forms in Cellular Automata by Evolutionary Algorithms , 2003, Artificial Evolution.

[36]  Genaro Juárez Martínez,et al.  Designing Complex Dynamics in Cellular Automata with Memory , 2013, Int. J. Bifurc. Chaos.

[37]  Mansoor Saburov,et al.  Periodic cellular automata of period-2 , 2015 .

[38]  Juan Carlos Seck Tuoh Mora,et al.  Determining a regular language by glider-based structures called phases fi_1 in Rule 110 , 2007, 0706.3348.

[39]  Juan Carlos Seck Tuoh Mora,et al.  Emergence of density dynamics by surface interpolation in elementary cellular automata , 2014, Commun. Nonlinear Sci. Numer. Simul..

[40]  Andrew Wuensche,et al.  Classifying cellular automata automatically: Finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter , 1998, Complex..

[41]  Hector Zenil,et al.  Rule Primality, Minimal Generating Sets and Turing-Universality in the Causal Decomposition of Elementary Cellular Automata , 2018, J. Cell. Autom..

[42]  P. Kurka Languages, equicontinuity and attractors in cellular automata , 1997, Ergodic Theory and Dynamical Systems.

[43]  Pedro P. B. de Oliveira,et al.  Inferring the Limit Behavior of Some Elementary Cellular Automata , 2017, Int. J. Bifurc. Chaos.

[44]  Yanbo Zhang Definition and Identification of Information Storage and Processing Capabilities as Possible Markers for Turing Universality in Cellular Automata , 2018, Complex Syst..

[45]  Enrico Formenti,et al.  Limit Properties of Doubly Quiescent m-Asynchronous Elementary Cellular Automata , 2014, J. Cell. Autom..

[46]  James P. Crutchfield,et al.  A Genetic Algorithm Discovers Particle-Based Computation in Cellular Automata , 1994, PPSN.

[47]  Pedro P. B. de Oliveira,et al.  Advances in the study of elementary cellular automata regular language complexity , 2016, Complex..

[48]  B. Stone,et al.  Line complexity asymptotics of polynomial cellular automata , 2016 .

[49]  Genaro Juárez Martínez,et al.  Conservative Computing in a One-dimensional Cellular Automaton with Memory , 2018, J. Cell. Autom..

[50]  Sara Imari Walker,et al.  An Information-Based Classification of Elementary Cellular Automata , 2017, Complex..