Numerical evidence of breaking of vortex lines in an ideal fluid

[1]  E. Kuznetsov,et al.  Numerical modeling of collapse in ideal incompressible hydrodynamics , 2001 .

[2]  E. Kuznetsov,et al.  Collapse of vortex lines in hydrodynamics , 2000 .

[3]  E. Kuznetsov,et al.  Hamiltonian dynamics of vortex lines in hydrodynamic-type systems , 1998 .

[4]  Kai Germaschewski,et al.  ADAPTIVE MESH REFINEMENT FOR SINGULAR SOLUTIONS OF THE INCOMPRESSIBLE EULER EQUATIONS , 1998 .

[5]  Richard B. Pelz,et al.  Locally self-similar finite time collapse in a high-symmetry vortex filament model , 1997 .

[6]  C. E. Stutz,et al.  Far-infrared magneto-optical study of two-dimensional electrons and holes in InAs/ Al x Ga 1 − x Sb quantum wells , 1997 .

[7]  C. Fefferman,et al.  Geometric constraints on potentially singular solutions for the 3-D Euler equations , 1996 .

[8]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[9]  Richard B. Pelz,et al.  DIRECT NUMERICAL SIMULATION OF TRANSITION TO TURBULENCE FROM A HIGH-SYMMETRY INITIAL CONDITION , 1994 .

[10]  Robert McDougall Kerr Evidence for a Singularity of the Three Dimensional, Incompressible Euler Equations , 1993 .

[11]  Victor S. L’vov,et al.  Scale invariant theory of fully developed hydrodynamic turbulence―Hamiltonian approach , 1991 .

[12]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[13]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[14]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[15]  S. Crow Stability theory for a pair of trailing vortices , 1970 .

[16]  Kuznetsov,et al.  Quasiclassical theory of three-dimensional wave collapse , 2022 .