Numerical evidence of breaking of vortex lines in an ideal fluid
暂无分享,去创建一个
Moscow | Lomonosov Moscow State University | France. | Observatoire de la Côte d'Azur | E. Kuznetsov | Russian Federation. | O. Podvigina | Nice | L. M. S. University | Mathematical Geophysics | V. A. Z. L. D. L. I. F. T. Physics | International Institute of Earthquake Prediction Theory | R. F. I. O. Mechanics | V. E. D. I. F. A. Physics
[1] E. Kuznetsov,et al. Numerical modeling of collapse in ideal incompressible hydrodynamics , 2001 .
[2] E. Kuznetsov,et al. Collapse of vortex lines in hydrodynamics , 2000 .
[3] E. Kuznetsov,et al. Hamiltonian dynamics of vortex lines in hydrodynamic-type systems , 1998 .
[4] Kai Germaschewski,et al. ADAPTIVE MESH REFINEMENT FOR SINGULAR SOLUTIONS OF THE INCOMPRESSIBLE EULER EQUATIONS , 1998 .
[5] Richard B. Pelz,et al. Locally self-similar finite time collapse in a high-symmetry vortex filament model , 1997 .
[6] C. E. Stutz,et al. Far-infrared magneto-optical study of two-dimensional electrons and holes in InAs/ Al x Ga 1 − x Sb quantum wells , 1997 .
[7] C. Fefferman,et al. Geometric constraints on potentially singular solutions for the 3-D Euler equations , 1996 .
[8] U. Frisch. Turbulence: The Legacy of A. N. Kolmogorov , 1996 .
[9] Richard B. Pelz,et al. DIRECT NUMERICAL SIMULATION OF TRANSITION TO TURBULENCE FROM A HIGH-SYMMETRY INITIAL CONDITION , 1994 .
[10] Robert McDougall Kerr. Evidence for a Singularity of the Three Dimensional, Incompressible Euler Equations , 1993 .
[11] Victor S. L’vov,et al. Scale invariant theory of fully developed hydrodynamic turbulence―Hamiltonian approach , 1991 .
[12] A. Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[13] Tosio Kato,et al. Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .
[14] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[15] S. Crow. Stability theory for a pair of trailing vortices , 1970 .
[16] Kuznetsov,et al. Quasiclassical theory of three-dimensional wave collapse , 2022 .