Programming tools and environments

Along with new languages, numerical libraries, and infrastructures—with names like KeLP, Titanium, and Meta-Chaos—they let scientists create deeply complex compute-and data-intensive applications. and Environments Neuron simulation rendered with the MCell program.

[1]  Jack Dongarra,et al.  PVM: Parallel virtual machine: a users' guide and tutorial for networked parallel computing , 1995 .

[2]  James Demmel,et al.  An Asynchronous Parallel Supernodal Algorithm for Sparse Gaussian Elimination , 1997, SIAM J. Matrix Anal. Appl..

[3]  Scott B. Baden,et al.  Modernization of Legacy Application Software , 1998, PARA.

[4]  Jack Dongarra,et al.  MPI: The Complete Reference , 1996 .

[5]  Joel H. Saltz,et al.  Titan: a high-performance remote-sensing database , 1997, Proceedings 13th International Conference on Data Engineering.

[6]  Scott B. Baden,et al.  Efficient Run-Time Support for Irregular Block-Structured Applications , 1998, J. Parallel Distributed Comput..

[7]  Joel H. Saltz,et al.  Interoperability of data parallel runtime libraries , 1997, Proceedings 11th International Parallel Processing Symposium.

[8]  Ian T. Foster,et al.  Globus: a Metacomputing Infrastructure Toolkit , 1997, Int. J. High Perform. Comput. Appl..

[9]  Katherine A. Yelick,et al.  Titanium: A High-performance Java Dialect , 1998, Concurr. Pract. Exp..

[10]  Henri Casanova,et al.  NetSovle: A Network Server for Solving Computational Science Problems , 1996, Proceedings of the 1996 ACM/IEEE Conference on Supercomputing.