High-order Finite Volume Methods and Multiresolution Reproducing Kernels

This paper presents a review of some of the most successful higher-order numerical schemes for the compressible Navier-Stokes equations on unstructured grids. A suitable candidate scheme would need to be able to handle potentially discontinuous flows, arising from the predominantly hyperbolic character of the equations, and at the same time be well suited for elliptic problems, in order to deal with the viscous terms. Within this context, we explore the performance of Moving Least-Squares (MLS) approximations in the construction of higher order finite volume schemes on unstructured grids. The scope of the application of MLS is threefold: 1) computation of high order derivatives of the field variables for a Godunov-type approach to hyperbolic problems or terms of hyperbolic character, 2) direct reconstruction of the fluxes at cell edges, for elliptic problems or terms of elliptic character, and 3) multiresolution shock detection and selective limiting. The proposed finite volume method is formulated within a continuous spatial representation framework, provided by the MLS approximants, which is “broken” locally (inside each cell) into piecewise polynomial expansions, in order to make use of the specialized finite volume technology for hyperbolic problems. This approach is in contrast with the usual practice in the finite volume literature, which proceeds bottom-up, starting from a piecewise constant spatial representation. Accuracy tests show that the proposed method achieves the expected convergence rates. Representative simulations show that the methodology is applicable to problems of engineering interest, and very competitive when compared to other existing procedures.

[1]  Z. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids , 2002 .

[2]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[3]  C. Ollivier-Gooch,et al.  A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation , 2002 .

[4]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[5]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[6]  F. Brezzi,et al.  Discontinuous Galerkin approximations for elliptic problems , 2000 .

[7]  David Levin,et al.  The approximation power of moving least-squares , 1998, Math. Comput..

[8]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[9]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[10]  Douglas Houliston,et al.  Impulse calibration of seismometers , 1982 .

[11]  C. M. Elliott,et al.  A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation , 1989 .

[12]  Jing Wan,et al.  Enriched multi-point flux approximation for general grids , 2008, J. Comput. Phys..

[13]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[14]  Zhi J. Wang,et al.  Evaluation of discontinuous Galerkin and spectral volume methods for scalar and system conservation laws on unstructured grids , 2004 .

[15]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[16]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[17]  Fermín Navarrina,et al.  Finite volume solvers and movingleast-squares approximations for thecompressible Navier-Stokes equations onunstructured grids , 2007 .

[18]  Chi-Wang Shu,et al.  Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives , 2002, J. Sci. Comput..

[19]  Timothy J. Barth,et al.  Recent developments in high order K-exact reconstruction on unstructured meshes , 1993 .

[20]  Yuzhi Sun,et al.  Spectral (finite) volume method for conservation laws on unstructured grids VI: Extension to viscous flow , 2006, J. Comput. Phys..

[21]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[22]  Rémi Abgrall,et al.  High Order Fluctuation Schemes on Triangular Meshes , 2003, J. Sci. Comput..

[23]  S. Osher,et al.  Triangle based adaptive stencils for the solution of hyperbolic conservation laws , 1992 .

[24]  Rémi Abgrall,et al.  Residual Distribution Schemes on Quadrilateral Meshes , 2007, J. Sci. Comput..

[25]  Bram Van Leer,et al.  Discontinuous Galerkin for Diffusion , 2005 .

[26]  Per-Olof Persson,et al.  The Compact Discontinuous Galerkin (CDG) Method for Elliptic Problems , 2007, SIAM J. Sci. Comput..

[27]  Carl Ollivier-Gooch,et al.  High-order ENO schemes for unstructured meshes based on least-squares reconstruction , 1997 .

[28]  Li,et al.  Moving least-square reproducing kernel methods (I) Methodology and convergence , 1997 .

[29]  John W. Barrett,et al.  Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy , 1997 .

[30]  S. Osher,et al.  Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .

[31]  PAUL CASTILLO,et al.  Performance of Discontinuous Galerkin Methods for Elliptic PDEs , 2002, SIAM J. Sci. Comput..

[32]  O. Friedrich,et al.  Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .

[33]  Yan Xu,et al.  Local discontinuous Galerkin methods for the Cahn-Hilliard type equations , 2007, J. Comput. Phys..

[34]  Charles M. Elliott,et al.  A second order splitting method for the Cahn-Hilliard equation , 1989 .

[35]  Neil D. Sandham,et al.  Low-Dissipative High-Order Shock-Capturing Methods Using Characteristic-Based Filters , 1999 .

[36]  Rémi Abgrall,et al.  Residual Distribution Schemes for Conservation Laws via Adaptive Quadrature , 2013, SIAM J. Sci. Comput..

[37]  H. Kamath,et al.  A high-resolution procedure for Euler and Navier-Stokes computations on unstructured grids , 2000 .

[38]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[39]  Neal T. Frink,et al.  Upwind Scheme for Solving the Euler Equations on Unstructured Tetrahedral Meshes , 1992 .

[40]  Herman Deconinck,et al.  Residual distribution for general time-dependent conservation laws , 2005 .

[41]  Rémi Abgrall,et al.  Essentially non-oscillatory Residual Distribution schemes for hyperbolic problems , 2006, J. Comput. Phys..

[42]  A. Shapiro The dynamics and thermodynamics of compressible fluid flow. , 1953 .

[43]  Harald Garcke,et al.  Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility , 1999, SIAM J. Numer. Anal..

[44]  S. M. Choo,et al.  A discontinuous Galerkin method for the Cahn-Hilliard equation , 2005 .

[45]  Rémi Abgrall,et al.  An essentially non-oscillatory reconstruction procedure on finite-element type meshes: Application to compressible flows , 1994 .

[46]  Fermín Navarrina,et al.  On the Galerkin formulation of the smoothed particle hydrodynamics method , 2004 .

[47]  Pietro De Palma,et al.  Residual distribution schemes for advection and advection-diffusion problems on quadrilateral cells , 2006, J. Comput. Phys..

[48]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[49]  Thomas Sonar,et al.  On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations : polynomial recovery, accuracy and stencil selection , 1997 .

[50]  Richard Welford,et al.  A multigrid finite element solver for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[51]  Jaime Peraire,et al.  A time-adaptive finite volume method for the Cahn-Hilliard and Kuramoto-Sivashinsky equations , 2008, J. Comput. Phys..

[52]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[53]  J. Peiro,et al.  On 2D elliptic discontinuous Galerkin methods , 2006 .

[54]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[55]  Amir Nejat,et al.  On Obtaining High-Order Finite-Volume Solutions to the Euler Equations on Unstructured Meshes , 2007 .

[56]  F. White Viscous Fluid Flow , 1974 .

[57]  A. Iske,et al.  HIGH ORDER WENO FINITE VOLUME SCHEMES USING POLYHARMONIC SPLINE RECONSTRUCTION , 2006 .

[58]  Wing Kam Liu,et al.  Moving least-square reproducing kernel method Part II: Fourier analysis , 1996 .

[59]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[60]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[61]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[62]  T. F. Russell,et al.  Relationships among some locally conservative discretization methods which handle discontinuous coefficients , 2004 .

[63]  A. Harten,et al.  Multi-Dimensional ENO Schemes for General Geometries , 1991 .

[64]  Zhi-zhong Sun,et al.  A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation , 1995 .

[65]  G. D. van Albada,et al.  A comparative study of computational methods in cosmic gas dynamics , 1982 .

[66]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[67]  S. Jun,et al.  Multiresolution reproducing kernel particle methods , 1997 .

[68]  Daisuke Furihata,et al.  A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.

[69]  John Van Rosendale Floating Shock Fitting Via Lagrangian Adaptive Meshes. , 1994 .

[70]  V. Venkatakrishnan Convergence to steady state solutions of the Euler equations on unstructured grids with limiters , 1995 .

[71]  Rémi Abgrall,et al.  On the use of Mühlbach expansions in the recovery step of ENO methods , 1997 .

[72]  Zhi J. Wang,et al.  Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional systems , 2004 .

[73]  Ragnar Winther,et al.  Convergence of multipoint flux approximations on quadrilateral grids , 2006 .

[74]  Zhi Jian Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids III: One Dimensional Systems and Partition Optimization , 2004, J. Sci. Comput..

[75]  H. Paillere,et al.  MULTIDIMENSIONAL UPWIND RESIDUAL DISTRIBUTION SCHEMES FOR THE CONVECTION-DIFFUSION EQUATION , 1996 .

[76]  Shaofan Li,et al.  Reproducing kernel hierarchical partition of unity, Part I—formulation and theory , 1999 .

[77]  P. Frederickson,et al.  Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .

[78]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[79]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[80]  F. Navarrina,et al.  High‐order finite volume schemes on unstructured grids using moving least‐squares reconstruction. Application to shallow water dynamics , 2006 .

[81]  Andreas Prohl,et al.  Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits , 2003, Math. Comput..

[82]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[83]  Rémi Abgrall,et al.  Construction of second order accurate monotone and stable residual distribution schemes for unsteady flow problems , 2003 .

[84]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[85]  Björn Sjögreen,et al.  Multiresolution Wavelet Based Adaptive Numerical Dissipation Control for High Order Methods , 2004, J. Sci. Comput..

[86]  Rémi Abgrall,et al.  Toward the ultimate conservative scheme: following the quest , 2001 .

[87]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[88]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[89]  Philip L. Roe,et al.  Multidimensional upwind schemes based on fluctuation-splitting for systems of conservation laws , 1993 .

[90]  Mengping Zhang,et al.  An analysis of and a comparison between the discontinuous Galerkin and the spectral finite volume methods , 2005 .

[91]  Krishna Garikipati,et al.  A discontinuous Galerkin method for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[92]  A. Iske,et al.  On the structure of function spaces in optimal recovery of point functionals for ENO-schemes by radial basis functions , 1996 .

[93]  Rémi Abgrall,et al.  On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .

[94]  G. T. Eigestad,et al.  On the convergence of the multi-point flux approximation O-method: Numerical experiments for discontinuous permeability , 2005 .

[95]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[96]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[97]  Thomas Sonar,et al.  On Families of Pointwise Optimal Finite Volume ENO Approximations , 1998 .

[98]  A. Gossler Moving Least-Squares: A Numerical Differentiation Method for Irregularly Spaced Calculation Points , 2001 .

[99]  Rémi Abgrall,et al.  Towards very high‐order accurate schemes for unsteady convection problems on unstructured meshes , 2005 .

[100]  I. Aavatsmark,et al.  An Introduction to Multipoint Flux Approximations for Quadrilateral Grids , 2002 .

[101]  Zhi J. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids. Basic Formulation , 2002 .

[102]  T. Barth Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations , 1994 .

[103]  Amir Nejat,et al.  Accuracy Assessment Methodology for a Higher-Order Unstructured Finite Volume Solver , 2007 .

[104]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .