Time resolution of silicon pixel sensors

We derive expressions for the time resolution of silicon detectors, using the Landau theory and a PAI model for describing the charge deposit of high energy particles. First we use the centroid time of the induced signal and derive analytic expressions for the three components contributing to the time resolution, namely charge deposit fluctuations, noise and fluctuations of the signal shape due to weighting field variations. Then we derive expressions for the time resolution using leading edge discrimination of the signal for various electronics shaping times. Time resolution of silicon detectors with internal gain is discussed as well.

[1]  P. Jarron,et al.  High rate particle tracking and ultra-fast timing with a thin hybrid silicon pixel detector , 2013 .

[2]  Helmuth Spieler,et al.  Fast Timing Methods for Semiconductor Detectors , 1982, IEEE Transactions on Nuclear Science.

[3]  Nicolo Cartiglia,et al.  Ultra-Fast Silicon Detectors , 2013, An Introduction to Ultra-Fast Silicon Detectors.

[4]  Nicolo Cartiglia,et al.  Weightfield2: A fast simulator for silicon and diamond solid state detector , 2015 .

[5]  H. Schindler Microscopic Simulation of Particle Detectors , 2012 .

[6]  Roberta Arcidiacono,et al.  Ultra-Fast Silicon Detectors for 4D tracking , 2017 .

[7]  Pierre Jarron,et al.  Increased Speed: 3D Silicon Sensors; Fast Current Amplifiers , 2011, IEEE Transactions on Nuclear Science.

[8]  G. Pellegrini,et al.  Technology developments and first measurements of Low Gain Avalanche Detectors (LGAD) for high energy physics applications , 2014 .

[10]  P. Meridiani,et al.  On the timing performance of thin planar silicon sensors , 2017 .

[11]  W. Allison,et al.  Relativistic Charged Particle Identification by Energy Loss , 1980 .

[12]  Mathieu Benoit,et al.  100ps time resolution with thin silicon pixel detectors and a SiGe HBT amplifier , 2015 .

[13]  P. Jarron,et al.  The TDCpix readout ASIC: A 75 ps resolution timing front-end for the NA62 Gigatracker hybrid pixel detector , 2013 .

[14]  Claire Vallance,et al.  Fast sensors for time-of-flight imaging applications. , 2014, Physical chemistry chemical physics : PCCP.

[15]  E. Stern,et al.  Signal processing considerations for liquid ionization calorimeters in a high rate environment , 1994 .

[16]  W. Riegler,et al.  Point charge potential and weighting field of a pixel or pad in a plane condenser , 2014 .

[17]  V. Fadeyev,et al.  Performance of ultra-fast silicon detectors , 2013, 1312.1080.

[18]  V. Fadeyev,et al.  Sensors for ultra-fast silicon detectors , 2014 .

[19]  Maurizio Boscardin,et al.  Tracking in 4 dimensions , 2017 .

[20]  F. Cenna,et al.  Beam test results of a 16 ps timing system based on ultra-fast silicon detectors , 2016, 1608.08681.

[21]  C. Canali,et al.  Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature , 1975, IEEE Transactions on Electron Devices.

[22]  R. Heeren,et al.  Emerging technologies in mass spectrometry imaging. , 2012, Journal of proteomics.

[23]  Maurizio Boscardin,et al.  Design optimization of ultra-fast silicon detectors , 2015 .

[24]  M. Morel,et al.  The TDCpix Readout ASIC: A 75 ps Resolution Timing Front-End for the Gigatrackerof theNA62 Experiment , 2012 .

[25]  A. Rivetti Fast front-end electronics for semiconductor tracking detectors: Trends and perspectives , 2014 .