Total Least Squares Fitting of k-Spheres in n-D Euclidean Space Using an (n+2)-D Isometric Representation
暂无分享,去创建一个
[1] David Hestenes,et al. Generalized homogeneous coordinates for computational geometry , 2001 .
[2] W. Gander,et al. Least-squares fitting of circles and ellipses , 1994 .
[3] Gabriel Taubin,et al. Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves Defined by Implicit Equations with Applications to Edge and Range Image Segmentation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[4] Stephen Mann,et al. Geometric algebra for computer science - an object-oriented approach to geometry , 2007, The Morgan Kaufmann series in computer graphics.
[5] G. E. Raynor. On N+2 Mutually Orthogonal Hyperspheres in Euclidean N-Space , 1934 .
[6] D. Hestenes,et al. Clifford Algebra to Geometric Calculus , 1984 .
[7] A. Al-Sharadqah,et al. Error analysis for circle fitting algorithms , 2009, 0907.0421.
[8] Qizhuo Huang,et al. Errors-In-Variables regression and the problem of moments , 2013 .
[9] W. Forstner,et al. Uncertain Geometry with Circles, Spheres and Conics , 2006 .
[10] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[11] Yves Nievergelt,et al. Hyperspheres and hyperplanes fitted seamlessly by algebraic constrained total least-squares , 2001 .
[12] D. Dijkman. Efficient Implementation of Geometric Algebra , 2007 .
[13] Pierre Anglès. Construction de revêtements du groupe conforme d’un espace vectoriel muni d’une «métrique» de type $(p, q)$ , 1980 .
[14] Leo Dorst,et al. Square Root and Logarithm of Rotors in 3D Conformal Geometric Algebra Using Polar Decomposition , 2011, Guide to Geometric Algebra in Practice.
[15] Leo Dorst,et al. Estimating Motors from a Variety of Geometric Data in 3D Conformal Geometric Algebra , 2011, Guide to Geometric Algebra in Practice.
[16] Dietmar Hildenbrand,et al. Engineering Graphics in Geometric Algebra , 2010, Geometric Algebra Computing.
[17] P. Giblin. Computational geometry: algorithms and applications (2nd edn.), by M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf. Pp. 367. £20.50. 2000. ISBN 3 540 65620 0 (Springer-Verlag). , 2001, The Mathematical Gazette.
[18] P. Michor,et al. Some Remarks on the Plücker Relations , 1999 .
[19] Vaughan R. Pratt,et al. Direct least-squares fitting of algebraic surfaces , 1987, SIGGRAPH.
[20] Kenichi Kanatani,et al. Renormalization Returns: Hyper-renormalization and Its Applications , 2012, ECCV.
[21] Chris Doran,et al. PHYSICAL APPLICATIONS OF GEOMETRIC ALGEBRA , 2006 .
[22] I. D. Coope,et al. Circle fitting by linear and nonlinear least squares , 1993 .
[23] C. Doran,et al. Geometric Algebra for Physicists , 2003 .