Robust stabilization of linear and nonlinear fractional-order systems with nonlinear uncertain parameters

The paper presents the robust stabilization problem of linear and nonlinear fractional-order systems with nonlinear uncertain parameters. The uncertainty in the model appears in the form of combination of “additive perturbation” and “multiplicative perturbation”. Sufficient conditions for robust stabilization of such linear and nonlinear fractional-order systems are presented in terms of linear matrix inequalities and using the new generalization of Gronwall-Bellman approach.

[1]  Stanislaw H. Zak,et al.  On the stabilization and observation of nonlinear/uncertain dynamic systems , 1990 .

[2]  I. Podlubny Fractional differential equations , 1998 .

[3]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[4]  Mohamed Darouach,et al.  Observer-based control for fractional-order continuous-time systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[5]  Olivier Bachelier Commande des systemes lineaires incertains : placement de poles robuste en d-stabilite , 1998 .

[6]  Yangquan Chen,et al.  Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality , 2007, Appl. Math. Comput..

[7]  Jun-Guo Lu,et al.  Robust stability and stabilization of fractional-order linear systems with nonlinear uncertain parameters: An LMI approach , 2009 .

[8]  K. Narendra,et al.  Stability of linear time-invariant systems , 1967 .

[9]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[10]  Bor-Sen Chen,et al.  Robust linear controller design: Time domain approach , 1987 .

[11]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[12]  Mohamed Darouach,et al.  On the robustness of linear systems with nonlinear uncertain parameters , 1998, Autom..

[13]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[14]  B. G. Pachpatte,et al.  A note on Gronwall-Bellman inequality , 1973 .

[15]  Jun-Guo Lu,et al.  Stability Analysis of a Class of Nonlinear Fractional-Order Systems , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[16]  Valentina Orsini,et al.  Relaxed sufficient conditions for the stability of continuous and discrete-time linear time-varying systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[17]  Mohamed Darouach,et al.  Stabilization of a Class of Nonlinear Affine Fractional-Order Systems , 2009 .

[18]  Kiyotaka Shimizu,et al.  Nonlinear state observers by gradient descent method , 2000, Proceedings of the 2000. IEEE International Conference on Control Applications. Conference Proceedings (Cat. No.00CH37162).

[19]  Jun-Guo Lu,et al.  Robust Stability and Stabilization of Fractional-Order Interval Systems with the Fractional Order $\alpha$: The $0≪\alpha≪1$ Case , 2010, IEEE Transactions on Automatic Control.

[20]  P. Khargonekar,et al.  Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity / control theory , 1990 .

[21]  Yangquan Chen,et al.  Robust stability check of fractional order linear time invariant systems with interval uncertainties , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[22]  Alexandr A. Zevin,et al.  Exponential stability and solution bounds for systems with bounded nonlinearities , 2003, IEEE Trans. Autom. Control..

[23]  Igor Podlubny,et al.  Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation , 2001, math/0110241.

[24]  Mathieu Moze,et al.  LMI stability conditions for fractional order systems , 2010, Comput. Math. Appl..

[25]  Mahmoud Chilali Méthodes LMI pour l'analyse et la synthèse multicritère , 1996 .