An Adaptive -Based Formation Control for Multirobot Systems

We describe a decentralized formation problem for multiple robots, where an formation controller is proposed. The network of dynamic agents with external disturbances and uncertainties are discussed in formation problems. We first describe how to design social potential fields to obtain a formation with the shape of a polygon. Then, we provide a formal proof of the asymptotic stability of the system, based on the definition of a proper Lyapunov function and technique. The advantages of the proposed controller can be listed as robustness to input nonlinearity, external disturbances, and model uncertainties, while applicability on a group of any autonomous systems with -degrees of freedom. Finally, simulation results are demonstrated for a multiagent formation problem of a group of six robots, illustrating the effective attenuation of approximation error and external disturbances, even in the case of agent failure or leader tracking.

[1]  Hongyan Wang,et al.  Social potential fields: A distributed behavioral control for autonomous robots , 1995, Robotics Auton. Syst..

[2]  George J. Pappas,et al.  Flocking in Fixed and Switching Networks , 2007, IEEE Transactions on Automatic Control.

[3]  Colin R. McInnes,et al.  Small spacecraft formation using potential functions , 2009 .

[4]  P. Khargonekar,et al.  STATESPACE SOLUTIONS TO STANDARD 2 H AND H? CONTROL PROBLEMS , 1989 .

[5]  Nurkan Yagiz,et al.  Fuzzy Sliding-Mode Control of Active Suspensions , 2008, IEEE Transactions on Industrial Electronics.

[6]  Dimos V. Dimarogonas,et al.  Connectedness Preserving Distributed Swarm Aggregation for Multiple Kinematic Robots , 2008, IEEE Transactions on Robotics.

[7]  Kiyohito Tokuda,et al.  Vehicle control algorithms for cooperative driving with automated vehicles and intervehicle communications , 2002, IEEE Trans. Intell. Transp. Syst..

[8]  Fumio Harashima,et al.  A position control differential drive wheeled mobile robot , 2001, IEEE Trans. Ind. Electron..

[9]  Daniel Coutinho,et al.  Multiple-Loop H-Infinity Control Design for Uninterruptible Power Supplies , 2007, IEEE Transactions on Industrial Electronics.

[10]  Tong Heng Lee,et al.  Modeling and Control of the Yaw Channel of a UAV Helicopter , 2008, IEEE Transactions on Industrial Electronics.

[11]  Meng Joo Er,et al.  Obstacle avoidance of a mobile robot using hybrid learning approach , 2005, IEEE Transactions on Industrial Electronics.

[12]  Bor-Sen Chen,et al.  H∞ tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach , 1996, IEEE Trans. Fuzzy Syst..

[13]  Mikihiko Matsui,et al.  Fuzzy-Logic-Based $V/f$ Control of an Induction Motor for a DC Grid Power-Leveling System Using Flywheel Energy Storage Equipment , 2009, IEEE Transactions on Industrial Electronics.

[14]  Michael Defoort,et al.  Sliding-Mode Formation Control for Cooperative Autonomous Mobile Robots , 2008, IEEE Transactions on Industrial Electronics.

[15]  Karsten Berns,et al.  Development of complex robotic systems using the behavior-based control architecture iB2C , 2010, Robotics Auton. Syst..

[16]  Bor-Sen Chen,et al.  A nonlinear H∞ control design in robotic systems under parameter perturbation and external disturbance , 1994 .

[17]  A. Tsourdos,et al.  Contaminant Cloud Boundary Monitoring Using Network of UAV Sensors , 2008, IEEE Sensors Journal.

[18]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[19]  Indra Narayan Kar,et al.  Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots , 2006, IEEE Transactions on Control Systems Technology.

[20]  Veysel Gazi,et al.  Swarm aggregations using artificial potentials and sliding-mode control , 2005, IEEE Transactions on Robotics.

[21]  Kouhei Ohnishi,et al.  Autonomous decentralized control for formation of multiple mobile robots considering ability of robot , 2004, IEEE Transactions on Industrial Electronics.

[22]  Kimon P. Valavanis,et al.  Swarm Formation Control Utilizing Elliptical Surfaces and Limiting Functions , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[23]  Woojin Chung,et al.  Discrete-Status-Based Localization for Indoor Service Robots , 2006, IEEE Transactions on Industrial Electronics.

[24]  Yupu Yang,et al.  Leader-following consensus problem with a varying-velocity leader and time-varying delays , 2009 .

[25]  Long Wang,et al.  Vision-Based Target Tracking and Collision Avoidance for Two Autonomous Robotic Fish , 2009, IEEE Transactions on Industrial Electronics.

[26]  Manfredi Maggiore,et al.  Necessary and sufficient graphical conditions for formation control of unicycles , 2005, IEEE Transactions on Automatic Control.

[27]  Chien Chern Cheah,et al.  Region-based shape control for a swarm of robots , 2009, Autom..

[28]  Pierluigi Siano,et al.  A Multilevel Inverter for Photovoltaic Systems With Fuzzy Logic Control , 2010, IEEE Transactions on Industrial Electronics.

[29]  Li-Xin Wang,et al.  A Course In Fuzzy Systems and Control , 1996 .

[30]  Faa-Jeng Lin,et al.  Adaptive Control of Two-Axis Motion Control System Using Interval Type-2 Fuzzy Neural Network , 2009, IEEE Transactions on Industrial Electronics.

[31]  Wei Wang,et al.  $H_{\infty}$ Control for Networked Predictive Control Systems Based on the Switched Lyapunov Function Method , 2010, IEEE Transactions on Industrial Electronics.

[32]  Jae Weon Choi,et al.  Localization of a mobile robot using the image of a moving object , 2003, IEEE Trans. Ind. Electron..

[33]  Naomi Ehrich Leonard,et al.  Stabilization of Planar Collective Motion: All-to-All Communication , 2007, IEEE Transactions on Automatic Control.

[34]  Aníbal Ollero,et al.  Reconfigurable Control Architecture for Distributed Systems in the HERO Autonomous Helicopter , 2011, IEEE Transactions on Industrial Electronics.

[35]  Ping Lam So,et al.  Model-Based $\hbox{H}_{\infty}$ Control of a Unified Power Quality Conditioner , 2009, IEEE Transactions on Industrial Electronics.

[36]  Alexander G. Loukianov,et al.  Robust Trajectory Tracking for an Electrohydraulic Actuator , 2009, IEEE Transactions on Industrial Electronics.

[37]  Fumio Harashima,et al.  A self-organized fuzzy controller for wheeled mobile robot using an evolutionary algorithm , 2001, IEEE Trans. Ind. Electron..

[38]  P. Shahmaleki,et al.  Real time experimental study of truck backer upper problem with fuzzy controller , 2008, 2008 World Automation Congress.