Arithmetic and Geometric Applications of Quantifier Elimination for Valued Fields

We survey applications of quantifier elimination to number theory and algebraic geometry, focusing on results of the last 15 years. We start with the applications of p-adic quantifier elimination to p-adic integration and the rationality of several Poincar series related to congruences f(x) = 0 modulo a prime power, where f is a polynomial in several variables. We emphasize the importance of p-adic cell decomposition, not only to avoid resolution of singularities, but especially to obtain much stronger arithmetical results. We survey the theory of p-adic subanalytic sets, which is needed when f is a power series instead of a polynomial. Next we explain the fundamental results of Lipshitz–Robinson and Gardener–Schoutens on subanalytic sets over algebraically closed complete valued fields, and the connection with rigid analytic geometry. Finally we discuss recent geometric applications of quantifier elimination over C((t)), related to the arc space of an algebraic variety. One of the most striking applications of the model theory of valued fields to arithmetic is the work of Ax and Kochen [1965a; 1965b; 1966; Kochen 1975], and of Ershov [1965; 1966; 1967], which provided for example the first quantifier elimination results for discrete valued fields [Ax and Kochen 1966], and the decidability of the field Qp of p-adic numbers. As a corollary of their work, Ax and Kochen [1965a] proved the following celebrated result: For each prime number p, big enough with respect to d, any homogeneous polynomial of degree d over Qp in d + 1 variables has a nontrivial zero in Qp. However in the present survey we will not discuss this work, but focus on results of the last 15 years. In Section 1 we explain the applications of p-adic quantifier elimination to p-adic integration and the rationality of several Poincare series related to a congruence f(x) ≡ 0 mod p, where f(x) is a polynomial in several variables with integer coefficients. We emphasize the importance of p-adic cell decomposition, not only to avoid resolution of singularities, but especially to obtain much stronger results (for example, on local singular series in several variables).

[1]  Fumihiro Sato On Functional Equations of Zeta Distributions , 1989 .

[2]  Zachary Robinson Flatness and Smooth Points of p-adic Subanalytic Sets , 1997, Ann. Pure Appl. Log..

[3]  Jan Denef,et al.  Report on Igusa's local zeta function , 1991 .

[4]  Hans Schoutens,et al.  Rigid subanalytic sets , 1994 .

[5]  N. Koblitz p-adic Numbers, p-adic Analysis, and Zeta-Functions , 1977 .

[6]  Ben Lichtin On a Question of Igusa: Towards a Theory of Several Variable Asymptotic Expansions: I , 2000, Compositio Mathematica.

[7]  J. Igusa Some Aspects of the Arithmetic Theory of Polynomials , 1987 .

[8]  Jean-Pierre Serre,et al.  Quelques applications du théorème de densité de Chebotarev , 1981 .

[9]  Jan Denef On the evaluation of certain p-adic integrals , 1985 .

[10]  Jan Denef,et al.  p-adic semi-algebraic sets and cell decomposition. , 1986 .

[11]  W. Veys Embedded resolution of singularities and Igusa's local zeta function , 2001 .

[12]  Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs , 1998, math/9803071.

[13]  L. Lipshitz,et al.  Rigid subanalytic subsets of the line and the plane , 1996 .

[14]  Neal Koblitz,et al.  p-adic numbers , 1977 .

[15]  F. Loeser Fonctions zêta locales d'Igusa à plusieurs variables, intégration dans les fibres, et discriminants , 1989 .

[16]  Nianzheng Liu,et al.  Analytic cell decomposition and the closure of p-adic semianalytic sets , 1997, Journal of Symbolic Logic.

[17]  橋本 喜一朗,et al.  Automorphic forms and geometry of arithmetic varieties , 1989 .

[18]  J. Nash Arc structure of singularities , 1995 .

[19]  Z. Robinson Smooth points ofp-adic subanalytic sets , 1993 .

[20]  H. Schoutens,et al.  Flattening and Subanalytic Sets in Rigid Analytic Geometry , 1997, math/9703223.

[21]  R. Remmert,et al.  Non-Archimedean Analysis: A Systematic Approach to Rigid Analytic Geometry , 1984 .

[22]  Rigid analytic flatificators , 1997, math/9702230.

[23]  Johan Pas,et al.  Uniform p-adic cell decomposition and local zeta functions. , 1989 .

[24]  Dan Segal,et al.  Subgroups of finite index in nilpotent groups , 1988 .

[25]  V. Batyrev On the Betti numbers of birationally isomorphic projective varieties with trivial canonical bundles , 1997 .

[26]  Simon Kochen,et al.  The model theory of local fields , 1975 .

[27]  On the rationality of certain generating functions , 1981 .

[28]  Closure of rigid semianalytic sets , 1997, math/9706227.

[29]  L. Lipshitz,et al.  Rings of separated power series , 2000 .

[30]  J. Igusa,et al.  Complex powers and asymptotic expansions. I. Functions of certain types. , 1974 .

[31]  W. Veys Reduction modulo pn of p-adic subanalytic sets , 1992, Mathematical Proceedings of the Cambridge Philosophical Society.

[32]  Finitely generated groups, $p$-adic analytic groups and Poincaré series , 1993 .

[33]  Angus Macintyre Rationality of p-adic Poincaré Series: Uniformity in p , 1990, Ann. Pure Appl. Log..

[34]  Marcus du Sautoy,et al.  Finitely generated groups, $p$-adic analytic groups, and Poincaré series , 1990 .

[35]  W. Veys Poles of Igusa's local zeta function and monodromy , 1993 .

[36]  Nicolas Bourbaki,et al.  Eléments de Mathématique , 1964 .

[37]  W. Veys THE TOPOLOGICAL ZETA FUNCTION ASSOCIATED TO A FUNCTION ON A NORMAL SURFACE GERM , 1999 .

[38]  Angus Macintyre,et al.  On definable subsets of p-adic fields , 1976, Journal of Symbolic Logic.

[39]  The meromorphic continuation of a zeta function of Weil and Igusa Type , 1986 .

[40]  H. Hironaka Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II , 1964 .

[41]  J. Igusa,et al.  Complex powers and asymptotic expansions. II. , 1975 .

[42]  Local Flattening in Rigid Analytic Geometry , 2000 .

[43]  M. Lejeune-jalabert,et al.  Sur L’espace Des Courses Tracées Sur Une Singularité , 1996 .

[44]  J. Denef,et al.  Germs of arcs on singular algebraic varieties and motivic integration , 1999 .

[45]  S. Kochen,et al.  Diophantine Problems Over Local Fields I , 1965 .

[46]  Stringy Hodge numbers of varieties with Gorenstein canonical singularities , 1997, alg-geom/9711008.

[47]  M. Lejeune-jalabert Courbes trac'ees sur une germe d''hypersurface , 1990 .

[48]  W. Veys Zeta Functions for Curves and Log Canonical Models , 1997 .

[49]  Jan Denef,et al.  The rationality of the Poincaré series associated to thep-adic points on a variety , 1984 .

[50]  Jan Denef,et al.  P-adic and real subanalytic sets , 1988 .

[51]  Marvin J. Greenberg Rational points in henselian discrete valuation rings , 1966 .

[52]  J. Denef,et al.  Caractristiques dEuler-Poincar, fonctions zta locales et modifications analytiques , 1992 .

[53]  J. Igusa,et al.  Lectures on Forms of Higher Degree , 1979 .

[54]  Some Results on p-Adic Complex Powers , 1984 .

[55]  Motivic Igusa zeta functions , 1998, math/9803040.

[56]  J. Pas Local zeta functions and Meuser's invariant functions , 1991 .