SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data

[1]  Suliana Manley,et al.  Quantitative evaluation of software packages for single-molecule localization microscopy , 2015, Nature Methods.

[2]  E. Hosy,et al.  Organization and dynamics of AMPA receptors inside synapses-nano-organization of AMPA receptors and main synaptic scaffolding proteins revealed by super-resolution imaging. , 2014, Current opinion in chemical biology.

[3]  A. Radenovic,et al.  Progress in quantitative single-molecule localization microscopy , 2014, Histochemistry and Cell Biology.

[4]  M. Sauer,et al.  Eight years of single-molecule localization microscopy , 2014, Histochemistry and Cell Biology.

[5]  M. Lakadamyali,et al.  Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate , 2014, Nature Methods.

[6]  Joe W. Gray,et al.  Single-molecule superresolution imaging allows quantitative analysis of RAF multimer formation and signaling , 2013, Proceedings of the National Academy of Sciences.

[7]  Wendell A. Lim,et al.  Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory , 2013, Proceedings of the National Academy of Sciences.

[8]  Daniel Choquet,et al.  Super-Resolution Imaging Reveals That AMPA Receptors Inside Synapses Are Dynamically Organized in Nanodomains Regulated by PSD95 , 2013, The Journal of Neuroscience.

[9]  M. Dahan,et al.  ViSP: representing single-particle localizations in three dimensions , 2013, Nature Methods.

[10]  F. Perez,et al.  Local palmitoylation cycles define activity-regulated postsynaptic subdomains , 2013, The Journal of cell biology.

[11]  U. Endesfelder,et al.  Multiscale spatial organization of RNA polymerase in Escherichia coli. , 2013, Biophysical journal.

[12]  Yu Song,et al.  Nanoscale Scaffolding Domains within the Postsynaptic Density Concentrate Synaptic AMPA Receptors , 2013, Neuron.

[13]  Silvia Hernández-Ainsa,et al.  Single protein molecule detection by glass nanopores. , 2013, ACS nano.

[14]  M. Heilemann,et al.  Super-Resolution Microscopy Reveals Specific Recruitment of HIV-1 Envelope Proteins to Viral Assembly Sites Dependent on the Envelope C-Terminal Tail , 2013, PLoS pathogens.

[15]  Kerstin Pingel,et al.  50 Years of Image Analysis , 2012 .

[16]  C. Bustamante,et al.  Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM) , 2012, Proceedings of the National Academy of Sciences.

[17]  Daniel Choquet,et al.  Integrins β1 and β3 exhibit distinct dynamic nanoscale organizations inside focal adhesions , 2012, Nature Cell Biology.

[18]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[19]  P. Annibale,et al.  Cell Type-specific β2-Adrenergic Receptor Clusters Identified Using Photoactivated Localization Microscopy Are Not Lipid Raft Related, but Depend on Actin Cytoskeleton Integrity* , 2012, The Journal of Biological Chemistry.

[20]  Astrid Magenau,et al.  Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution , 2012, Nature Communications.

[21]  Prabuddha Sengupta,et al.  Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis , 2011, Nature Methods.

[22]  Astrid Magenau,et al.  Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events , 2011, Nature Immunology.

[23]  P. Annibale,et al.  Identification of clustering artifacts in photoactivated localization microscopy , 2011, Nature Methods.

[24]  E. Gouaux,et al.  Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. , 2010, Biophysical journal.

[25]  David Baddeley,et al.  Visualization of Localization Microscopy Data , 2010, Microscopy and Microanalysis.

[26]  Isuru D. Jayasinghe,et al.  Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes , 2009, Proceedings of the National Academy of Sciences.

[27]  J. Hancock,et al.  On the use of Ripley's K-function and its derivatives to analyze domain size. , 2009, Biophysical journal.

[28]  S. Hell,et al.  Fluorescence nanoscopy by ground-state depletion and single-molecule return , 2008, Nature Methods.

[29]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[30]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[31]  Luis Moreno,et al.  Path Planning for Mobile Robot Navigation using Voronoi Diagram and Fast Marching , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[33]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[34]  Martin Isenburg,et al.  Isotropic surface remeshing , 2003, 2003 Shape Modeling International..

[35]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[36]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[37]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[38]  Hanan Samet,et al.  The Quadtree and Related Hierarchical Data Structures , 1984, CSUR.

[39]  Franziska Hoffmann,et al.  Spatial Tessellations Concepts And Applications Of Voronoi Diagrams , 2016 .

[40]  B. Ripley Modelling Spatial Patterns , 1977 .