THE DYNAMICS OF STELLAR CORONAE HARBORING HOT JUPITERS. I. A TIME-DEPENDENT MAGNETOHYDRODYNAMIC SIMULATION OF THE INTERPLANETARY ENVIRONMENT IN THE HD 189733 PLANETARY SYSTEM

We carry out the first time-dependent numerical magnetohydrodynamic modeling of an extrasolar planetary system to study the interaction of the stellar magnetic field and wind with the planetary magnetosphere and outflow. We base our model on the parameters of the HD 189733 system, which harbors a close-in giant planet. Our simulation reveals a highly structured stellar corona characterized by sectors with different plasma properties. The star–planet interaction (SPI) varies in magnitude and complexity, depending on the planetary phase, planetary magnetic field strength, and the relative orientation of the stellar and planetary fields. It also reveals a long, comet-like tail which is a result of the wrapping of the planetary magnetospheric tail by its fast orbital motion. A reconnection event occurs at a specific orbital phase, causing mass loss from the planetary magnetosphere that can generate a hot spot on the stellar surface. The simulation also shows that the system has sufficient energy to produce hot spots observed in Ca ii lines in giant planet hosting stars. However, the short duration of the reconnection event suggests that such SPI cannot be observed persistently.

[1]  V. Kashyap,et al.  THE IMPACT OF HOT JUPITERS ON THE SPIN-DOWN OF THEIR HOST STARS , 2010, 1009.5955.

[2]  V. Kashyap,et al.  XMM-NEWTON OBSERVATIONS OF HD 189733 DURING PLANETARY TRANSITS , 2010, 1008.3566.

[3]  V. Kashyap,et al.  THE CORONAL STRUCTURE OF AB DORADUS , 2010, 1007.4320.

[4]  T. Gombosi,et al.  SIMULATIONS OF WINDS OF WEAK-LINED T TAURI STARS. II. THE EFFECTS OF A TILTED MAGNETOSPHERE AND PLANETARY INTERACTIONS , 2010, 1007.3874.

[5]  V. Kashyap,et al.  MAGNETIC STRUCTURE OF RAPIDLY ROTATING FK COMAE-TYPE CORONAE , 2010, 1006.3738.

[6]  C. Moutou,et al.  Searching for star–planet interactions within the magnetosphere of HD 189733 , 2010, 1003.6027.

[7]  J. Schmitt,et al.  Coronal properties of planet-bearing stars , 2010, 1003.5802.

[8]  A. F. Lanza,et al.  Hot Jupiters and the evolution of stellar angular momentum , 2009, Proceedings of the International Astronomical Union.

[9]  H. Durand-Manterola Dipolar magnetic moment of the bodies of the solar system and the Hot Jupiters , 2009, 1007.4497.

[10]  V. Kashyap,et al.  INTERACTIONS OF THE MAGNETOSPHERES OF STARS AND CLOSE-IN GIANT PLANETS , 2009, 0909.3093.

[11]  Antonino Francesco Lanza Stellar coronal magnetic fields and star-planet interaction , 2009, 0906.1738.

[12]  U. Motschmann,et al.  Consequences of expanding exoplanetary atmospheres for magnetospheres , 2009 .

[13]  Frederic Pont,et al.  Empirical evidence for tidal evolution in transiting planetary systems , 2008, 0812.1463.

[14]  Norman Murray,et al.  ATMOSPHERIC ESCAPE FROM HOT JUPITERS , 2008, 0811.0006.

[15]  V. Kashyap,et al.  Extrasolar Giant Planets and X-Ray Activity , 2008, 0807.1308.

[16]  Antonino Francesco Lanza Hot Jupiters and stellar magnetic activity , 2008, 0805.3010.

[17]  X. Blanco‐Cano,et al.  Three-dimensional Hydrodynamical Simulation of the Exoplanet HD 209458b , 2007 .

[18]  A. Cameron,et al.  The On/Off Nature of Star-Planet Interactions , 2007, Proceedings of the International Astronomical Union.

[19]  Jeffrey C. Hall,et al.  The Activity and Variability of the Sun and Sun-like Stars. I. Synoptic Ca II H and K Observations , 2007 .

[20]  M. Velli,et al.  A Semiempirical Magnetohydrodynamical Model of the Solar Wind , 2007 .

[21]  U. Motschmann,et al.  A magnetic communication scenario for hot Jupiters , 2006 .

[22]  P. Zarka Plasma interactions of exoplanets with their parent star and associated radio emissions , 2006 .

[23]  David R. Chesney,et al.  Space Weather Modeling Framework: A new tool for the space science community , 2005, Journal of Geophysical Research.

[24]  R. Beebe Jupiter: The Planet, Satellites and Magnetosphere , 2005 .

[25]  T. Davidge,et al.  Investigating Ca II Emission in the RS Canum Venaticorum Binary ER Vulpeculae Using the Broadening Function Formalism , 2005, astro-ph/0504428.

[26]  U. Motschmann,et al.  The interaction of the stellar wind with an extrasolar planet—3D hybrid and drift-kinetic simulations , 2005 .

[27]  G. Walker,et al.  Hot Jupiters and Hot Spots: The Short- and Long-Term Chromospheric Activity on Stars with Giant Planets , 2004, astro-ph/0411655.

[28]  A. Sánchez‐Lavega,et al.  The Magnetic Field in Giant Extrasolar Planets , 2004 .

[29]  W. Ip,et al.  On the Star-Magnetosphere Interaction of Close-in Exoplanets , 2004 .

[30]  G. Walker,et al.  Evidence for Planet-induced Chromospheric Activity on HD 179949 , 2003 .

[31]  C. Arge,et al.  Improvement in the prediction of solar wind conditions using near‐real time solar magnetic field updates , 2000 .

[32]  S. Saar,et al.  On Stellar Activity Enhancement Due to Interactions with Extrasolar Giant Planets , 2000, The Astrophysical journal.

[33]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[34]  A. Cameron,et al.  Magnetic topology and prominence patterns on AB Doradus , 1999 .

[35]  A. Collier Cameron,et al.  Differential rotation and magnetic polarity patterns on AB Doradus , 1997 .

[36]  R. Paul Butler,et al.  Three New “51 Pegasi-Type” Planets , 1997 .

[37]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[38]  N. Sheeley,et al.  Solar wind speed and coronal flux-tube expansion , 1990 .

[39]  E. Parker Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .