A New Notion of Weighted Centers for Semidefinite Programming
暂无分享,去创建一个
[1] R. C. Monteiro,et al. Implementation of Primal-Dual Methods for Semidefinite Programming Based on Monteiro and Tsuchiya Ne , 1997 .
[2] Chek Beng Chua. The Primal-Dual Second-Order Cone Approximations Algorithm for Symmetric Cone Programming , 2007, Found. Comput. Math..
[3] Josef Stoer,et al. Analysis of infeasible-interior-point paths arising with semidefinite linear complementarity problems , 2004, Math. Program..
[4] Shuzhong Zhang,et al. On weighted centers for semidefinite programming , 2000, Eur. J. Oper. Res..
[5] Katya Scheinberg,et al. Interior Point Trajectories in Semidefinite Programming , 1998, SIAM J. Optim..
[6] Renato D. C. Monteiro,et al. General Interior-Point Maps and Existence of Weighted Paths for Nonlinear Semidefinite Complementarity Problems , 2000, Math. Oper. Res..
[7] G. P. Barker,et al. Cones of diagonally dominant matrices , 1975 .
[8] Levent Tunçel,et al. Invariance and efficiency of convex representations , 2007, Math. Program..
[9] Etienne de Klerk,et al. Limiting behavior of the central path in semidefinite optimization , 2005, Optim. Methods Softw..
[10] Renato D. C. Monteiro,et al. On Two Interior-Point Mappings for Nonlinear Semidefinite Complementarity Problems , 1998, Math. Oper. Res..
[11] Gábor Pataki,et al. On the generic properties of convex optimization problems in conic form , 2001, Math. Program..
[12] Zhi-Quan Luo,et al. Superlinear Convergence of a Symmetric Primal-Dual Path Following Algorithm for Semidefinite Programming , 1998, SIAM J. Optim..
[13] Henry Wolkowicz,et al. Strengthened existence and uniqueness conditions for search directions in semidefinite programming , 2005 .
[14] Nimrod Megiddo,et al. A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.
[15] Renato D. C. Monteiro,et al. Limiting behavior of the Alizadeh–Haeberly–Overton weighted paths in semidefinite programming , 2007, Optim. Methods Softw..
[16] Levent Tunçel,et al. Characterization of the barrier parameter of homogeneous convex cones , 1998, Math. Program..
[17] A. Forsgren,et al. CHARACTERIZATION OF THE LIMIT POINT OF THE CENTRAL PATH IN SEMIDEFINITE PROGRAMMING , 2002 .
[18] Chek Beng Chua. Relating Homogeneous Cones and Positive Definite Cones via T-Algebras , 2003, SIAM J. Optim..
[19] Jean-Philippe Vial,et al. Primal-dual target-following algorithms for linear programming , 1996, Ann. Oper. Res..
[20] C. B. Chua,et al. Analyticity of weighted central paths and error bounds for semidefinite programming , 2008, Math. Program..
[21] G. Pataki. Cone-LP ' s and Semidefinite Programs : Geometry and a Simplex-Type Method , 2022 .
[22] Renato D. C. Monteiro,et al. Error Bounds and Limiting Behavior of Weighted Paths Associated with the SDP Map X1/2SX1/2 , 2005, SIAM J. Optim..