A Review of Experimental Researches on the Thermophysical Properties of Hydrogen-Containing Mixtures at High Temperatures and High Pressures

[1]  Liejin Guo,et al.  Experimental measurements on chemical reaction and thermal conductivity of the H2/CO2/CO/CH4/H2O system using the short-hot-wire method at 664–915 K and 9.2–22.2 MPa , 2021 .

[2]  Liejin Guo,et al.  PVT Measurements of the H2–CO2–CH4–CO–H2O System at 740–939 K and 18.1–34.7 MPa with an Isochoric Apparatus and the Development of a Virial Equation of State , 2020 .

[3]  Liejin Guo,et al.  Thermal conductivity measurements of the H2/CO2 mixture using the short-hot-wire method at 323.15–620.05 K and 2.14–9.37 MPa , 2020 .

[4]  Xing Zhang,et al.  Thermodynamic Calculations of the Critical Points of the H2–CO2–CH4–CO–H2O System , 2020, International Journal of Thermophysics.

[5]  Liejin Guo,et al.  Viscosity Measurements of the H2–CO2, H2–CO2–CH4, and H2–H2O Mixtures and the H2–CO2–CH4–CO–H2O System at 280–924 K and 0.7–33.1 MPa with a Capillary Apparatus , 2020 .

[6]  Yuanbin Liu,et al.  Thermodynamic models for H2O–CO2–H2 mixtures in near-critical and supercritical regions of water , 2020 .

[7]  Yiyu Feng,et al.  Molecular dynamics simulation and theoretical study on heat capacities of supercritical H2O/CO2 mixtures , 2020 .

[8]  Yiyu Feng,et al.  Numerical study on transport properties of the working mixtures for coal supercritical water gasification based power generation systems , 2019, Applied Thermal Engineering.

[9]  Liejin Guo,et al.  Density Measurements of the H2–CO2–CH4–CO–H2O System by the Isochoric Method at 722–930 K and 15.4–30.3 MPa , 2019, Journal of Chemical & Engineering Data.

[10]  Weixiang Hong,et al.  Machine learning for predicting thermodynamic properties of pure fluids and their mixtures , 2019, Energy.

[11]  Xing Zhang,et al.  A switched vibrating-hot-wire method for measuring the viscosity and thermal conductivity of liquids. , 2019, The Review of scientific instruments.

[12]  Liejin Guo,et al.  Density Data of Two (H2 + CO2) Mixtures and a (H2 + CO2 + CH4) Mixture by a Modified Burnett Method at Temperature 673 K and Pressures up to 25 MPa , 2019, Journal of Chemical & Engineering Data.

[13]  Yuanbin Liu,et al.  A numerical study on the thermal conductivity of H2O/CO2/H2 mixtures in supercritical regions of water for coal supercritical water gasification system , 2019, International Journal of Heat and Mass Transfer.

[14]  B. Cao,et al.  A molecular dynamics simulation study of PVT properties for H2O/H2/CO2 mixtures in near-critical and supercritical regions of water , 2018, International Journal of Hydrogen Energy.

[15]  K. Shinzato,et al.  Viscosity measurements of hydrogen at high temperatures up to 573 K by a curved vibrating wire method , 2015 .

[16]  Liejin Guo,et al.  Supercritical water gasification research and development in China , 2015 .

[17]  K. Shinzato,et al.  Development of Gas Viscosity Measurement System with Vibrating Wire Method , 2015 .

[18]  Liejin Guo,et al.  Boiling coal in water: Hydrogen production and power generation system with zero net CO2 emission based on coal and supercritical water gasification , 2013 .

[19]  Zhenya Liu,et al.  Electric Power and Energy in China: Liu/Electric Power and Energy in China , 2013 .

[20]  E. Yusibani,et al.  A compact curved vibrating wire technique for measurement of hydrogen gas viscosity , 2013 .

[21]  Michael W. George,et al.  Densities of the carbon dioxide + hydrogen, a system of relevance to carbon capture and storage , 2013 .

[22]  W. Wagner,et al.  The GERG-2008 Wide-Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG-2004 , 2012 .

[23]  Y. Kano,et al.  Absolute density measurements by dual sinker magnetic levitation densimeter , 2012 .

[24]  K. Shindo,et al.  Burnett PVT Measurements of Hydrogen and the Development of a Virial Equation of State at Pressures up to 100 MPa , 2012 .

[25]  Kanei Shinzato,et al.  Measurements of Hydrogen Thermal Conductivity at High Pressure and High Temperature , 2011 .

[26]  J. Fukai,et al.  Thermal Conductivity Measurement of Gases by the Transient Short-Hot-Wire Method , 2011 .

[27]  S. G. Penoncello,et al.  Fundamental Equations of State for Parahydrogen, Normal Hydrogen, and Orthohydrogen , 2009 .

[28]  J. Sengers,et al.  Thermal Conductivity of Mixtures of Carbon Dioxide and Ethane in the Critical Region , 2008 .

[29]  M. McLinden,et al.  Apparatus for wide-ranging, high-accuracy fluid (p, ρ, T) measurements based on a compact two-sinker densimeter ☆ , 2007 .

[30]  John S. Rowlinson,et al.  On the Continuity of the Gaseous and Liquid States , 2004 .

[31]  W Wagner,et al.  Densimeters for very accurate density measurements of fluids over large ranges of temperature, pressure, and density , 2004 .

[32]  J. Trusler,et al.  Extended corresponding states model for fluids and fluid mixtures: II. Application to mixtures and natural gas systems , 2004 .

[33]  Extension of the torsional crystal viscometer to measurements in the time domain , 2003 .

[34]  J. Trusler,et al.  Extended corresponding states model for fluids and fluid mixtures: I. Shape factor model for pure fluids , 2003 .

[35]  W. Wagner,et al.  The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use , 2002 .

[36]  R. Tran-Son-Tay,et al.  A closed form solution for falling cylinder viscometers , 2002 .

[37]  Xing Zhang,et al.  Measurements of Thermal Conductivity and Thermal Diffusivity of Molten Carbonates , 2001 .

[38]  Craig A. Grimes,et al.  Magneto-acoustic sensors for measurement of liquid temperature, viscosity and density , 2001 .

[39]  Marc J. Assael,et al.  Thermal Conductivity of Toluene+Cyclopentane Mixtures: Measurements and Prediction , 2001 .

[40]  B. Wood,et al.  A new method for determining the P-V-T properties of high-density H2O using NMR: results at 1.4–4.0 gpa and 700–1100°c , 2000 .

[41]  Xing Zhang,et al.  Simultaneous Measurements of the Thermal Conductivity and Thermal Diffusivity of Molten Salts with a Transient Short-Hot-Wire Method , 2000 .

[42]  William A. Wakeham,et al.  A Vibrating-Wire Viscometer for Dilute and Dense Gases , 1998 .

[43]  Koichi Watanabe,et al.  Gas Phase PVT Properties for the Difluoromethane + Pentafluoroethane (R-32 + 125) System , 1996 .

[44]  W. Wagner,et al.  A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa , 1996 .

[45]  T. J. Ui,et al.  Erratum: ‘‘End effects for the falling cylinder viscometer’’ [Phys. Fluids A 5, 25 (1993)] , 1996 .

[46]  T. Irvine,et al.  Falling cylinder viscometer end correction factor , 1995 .

[47]  A. Palavra,et al.  An improved extended-corresponding-states theory for natural gas mixtures , 1994 .

[48]  T. Irvine,et al.  Theoretical and experimental study of the falling cylinder viscometer , 1994 .

[49]  B. D. Abadio,et al.  (Pressure, amount-of-substance density, temperature) of {(1-x)CO2+xH2} using a direct method , 1993 .

[50]  Marc J. Assael,et al.  Vibrating-wire viscometers for liquids at high pressures , 1992 .

[51]  Wolfgang Wagner,et al.  A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 100 MPa , 1991 .

[52]  G. Magnus,et al.  PVT data from burnett and refractive index measurements for the nitrogen-hydrogen system from 270 to 353 K and pressures to 30 MPa , 1991 .

[53]  N. Frederick,et al.  Torsional piezoelectric crystal viscometer for compressed gases and liquids , 1989 .

[54]  A. I. Johns,et al.  The thermal conductivity of pure nitrogen and of mixtures of nitrogen and carbon dioxide at elevated temperatures and pressures , 1988 .

[55]  S. Richardson,et al.  The theory of a vibrating-rod viscometer , 1987 .

[56]  W. Wakeham,et al.  The thermal conductivity of argon, carbon dioxide and nitrous oxide , 1987 .

[57]  S. Richardson,et al.  The theory of a vibrating-rod densimeter , 1986 .

[58]  A. Ghajar,et al.  An improved falling sphere viscometer for intermediate concentrations of viscoelastic fluids , 1986 .

[59]  J. Watson,et al.  Thermal conductivity of argon, nitrogen and carbon dioxide at elevated temperatures and pressures , 1986 .

[60]  R. D. Goodwin,et al.  Carbon Monoxide Thermophysical Properties from 68 to 1000 K at Pressures to 100 MPa , 1985 .

[61]  D. A. Jackson,et al.  An automated falling-cylinder high pressure laser-Doppler viscometer , 1985 .

[62]  J. Kestin,et al.  The transport properties of binary mixtures of hydrogen with CO, CO2 and CH4 , 1983 .

[63]  J. Watson,et al.  Thermal conductivity of carbon dioxide in the temperature range 300–348 K and pressures up to 25 MPa , 1983 .

[64]  H. M. Roder The Thermal Conductivity of Oxygen. , 1982, Journal of research of the National Bureau of Standards.

[65]  J. Kestin,et al.  The Thermal Conductivity of Mixtures of Hydrogen with Nitrogen , 1982 .

[66]  Hans M. Rodert,et al.  A Transient Hot Wire Thermal Conductivity Apparatus for Fluids. , 1981, Journal of research of the National Bureau of Standards.

[67]  H. M. Roder A Transient Hot Wire Thermal Conductivity Apparatus for Fluids. , 1981, Journal of research of the National Bureau of Standards.

[68]  William A. Wakeham,et al.  Absolute determination of the thermal conductivity of the noble gases and two of their binary mixtures as a function of density , 1981 .

[69]  Kiyoshi Yoshida,et al.  Slip Effect in Viscosity Measurement of Gases at Low Pressure with an Oscillating-Disk Viscometer , 1980 .

[70]  T. Minamiyama,et al.  Thermal Conductivity of Water and Steam at High Temperatures and Pressures : 2nd Report, Experimental Results with Water and Steam up to 420°C , 1979 .

[71]  J. Kestin,et al.  Thermal conductivity of N2, CH4 and CO2 at room temperature and at pressures up to 35 MPa , 1979 .

[72]  S. Block,et al.  Wall effects in a diamond‐anvil pressure‐cell falling‐sphere viscometer , 1979 .

[73]  M. Eastwood,et al.  Gas chormatographic technique for combined measurement of hydrogen and methane using thermal conductivity detector , 1979 .

[74]  J. Gallagher,et al.  Thermodynamic Properties of Ammonia , 1978 .

[75]  J. Kestin,et al.  The thermal conductivity of four monatomic gases as a function of density near room temperature , 1978 .

[76]  U. Grigull,et al.  Messung der Temperatur- und der Wärmeleitfähigkeit von Kohlendioxid im kritischen Gebiet mittels holographischer Interferometrie , 1978 .

[77]  W. Wakeham,et al.  An apparatus to measure the thermal conductivity of liquids , 1976 .

[78]  J. Kestin,et al.  Instrument to measure the thermal conductivity of gases , 1974 .

[79]  E. M. Stanley,et al.  Thermal conductivity of distilled water as function of pressure and temperature , 1974 .

[80]  J. Sutterby Falling sphere viscometer , 1973 .

[81]  B. A. Pokrovskii,et al.  A Rotary Viscometer , 1972 .

[82]  Measurements of the thermal conductivity of gases and gas mixtures, methods and results , 1972 .

[83]  B. L. Neindre Contribution a l'etude experimentale de la conductivite thermique de quelques fluides a haute temperature et a haute pression , 1972 .

[84]  J. Irving The effect of nonvertical alignment on the performance of a falling-cylinder viscometer , 1972 .

[85]  G. W. Swift,et al.  Analysis of entrance and exit effects in a falling cylinder viscometer , 1972 .

[86]  R. Mashelkar,et al.  Extrapolation procedures for zero shear viscosity with a falling sphere viscometer , 1971 .

[87]  W. M. Haynes,et al.  A Magnetic Densimeter for Low Temperatures and High Pressures , 1971 .

[88]  George Thodos,et al.  Thermal Conductivity of Mixtures in the Dense Gaseous State: The Methane-Carbon Dioxide System , 1969 .

[89]  B. B. Mcinteer,et al.  High‐Temperature Viscosity Ratios for Hydrogen, Helium, Argon, and Nitrogen , 1969 .

[90]  J. A. Lescarboura,et al.  The effect of eccentricity on the terminal velocity of the cylinder in a falling cylinder viscometer: Experimental verification for Newtonian Fluids , 1968 .

[91]  J. W. Leach,et al.  Use of molecular shape factors in vapor‐liquid equilibrium calculations with the corresponding states principle , 1968 .

[92]  P. S. Chappelear,et al.  THE CORRESPONDING STATES PRINCIPLE—A REVIEW OF CURRENT THEORY AND PRACTICE , 1968 .

[93]  A. G. Clarke,et al.  Low‐Temperature Viscosities of Argon, Krypton, and Xenon , 1968 .

[94]  J. A. Lescarboura,et al.  The Effect of Eccentricity on the Terminal Velocity of the Cylinder in a Falling Cylinder Viscometer , 1968 .

[95]  V. Zak Low-gradient rotary viscometer☆ , 1968 .

[96]  A. Gupta,et al.  Thermal conductivity of hydrogen-nitrogen and hydrogen-carbon-dioxide gas mixtures , 1967 .

[97]  R. Dipippo,et al.  A high-temperature oscillating-disk viscometer , 1966 .

[98]  S. Saxena,et al.  Thermal conductivity of the gas mixtures: Ar-D2, Kr-D2 and Ar-Kr-D2 , 1966 .

[99]  E. Whalley,et al.  The PVT properties of water , 1965, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[100]  J. A. Lescarboura,et al.  Falling cylinder viscometer for non‐Newtonian fluids , 1965 .

[101]  F. G. Keyes,et al.  The thermal conductivity of steam , 1964 .

[102]  J. Sengers,et al.  The thermal conductivity of carbon dioxide in the critical region , 1962 .

[103]  J. Sengers,et al.  The thermal conductivity of carbon dioxide in the critical region : III. Verification of the absence of convection , 1962 .

[104]  J. Sengers,et al.  The thermal conductivity of carbon dioxide in the critical region : II. Measurements and conclusions , 1962 .

[105]  J. Sengers,et al.  The thermal conductivity of carbon dioxide in the critical region: I. The thermal conductivity apparatus , 1962 .

[106]  L. A. Guildner Thermal conductivity of gases. II. Thermal conductivity of carbon dioxide near critical point , 1962 .

[107]  Charles R. Wilke,et al.  Thermal Conductivity of Gas Mixtures , 1962 .

[108]  Peter Gray,et al.  The thermal conductivity of mixtures of nitrogen, ammonia and hydrogen , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[109]  P. Morgan Notes on the falling sphere viscometer , 1961 .

[110]  A. Maude End effects in a falling-sphere viscometer , 1961 .

[111]  F. Kurata,et al.  An experimentally verified theoretical study of the falling cylinder viscometer , 1960 .

[112]  J. B. Mann,et al.  THERMAL CONDUCTIVITY OF HELIUM AND HYDROGEN AT HIGH TEMPERATURES , 1960 .

[113]  R. Lowell,et al.  Thermal Conductivity of Water at High Pressures , 1959 .

[114]  L. A. Guildner THE THERMAL CONDUCTIVITY OF CARBON DIOXIDE IN THE REGION OF THE CRITICAL POINT. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[115]  Edward A. Mason,et al.  Approximate Formula for the Thermal Conductivity of Gas Mixtures , 1958 .

[116]  R. Koyama,et al.  Viscosity Measurement by the Rotating Cylinder Method , 1956 .

[117]  E. Schmidt,et al.  Wärmeleitzahl-Messungen an Wasser, Äthylenglykol-Wasser-Mischungen Kalziumchlorid-Lösungen im Temperaturereich von 0 bis 100°C , 1955 .

[118]  C. Wilke A Viscosity Equation for Gas Mixtures , 1950 .

[119]  A. Thompson A Falling-sphere Viscometer for use with Opaque Liquids , 1949 .

[120]  Donald L. Katz,et al.  Density of Natural Gases , 1942 .

[121]  Gunnar Kellström XLVI. Note on the paper “A new Determination of the Viscosity of Air by the Rotating Cylinder Method” (Phil. Mag. ser. 7, vol. xxiii. p. 313 (1937)) , 1941 .

[122]  Manson Benedict,et al.  An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and Their Mixtures I. Methane, Ethane, Propane and n‐Butane , 1940 .

[123]  L. V. Clark,et al.  An improved rotary viscometer , 1940 .

[124]  Gunnar Kellström D.Sc. XXXIII. A new determination of the viscosity of air by the rotating cylinder method , 1937 .

[125]  S. Milverton An experimental investigation of thermal conduction through vapours , 1935 .

[126]  J. C. Williams,et al.  A Method for the Determination of the Wall Correction for the Falling Sphere Viscometer , 1935 .

[127]  B. A. Jones An automatic, modified falling-sphere viscometer , 1934 .

[128]  E. Schmidt,et al.  Wärmeleitfähigkeit des Wassers bei Temperaturen bis zu 270°C , 1932 .

[129]  J. Beattie A New Equation of State for Fluids: IV. An Equation Expressing the Volume as an Explicit Function of the Pressure and Temperature. , 1930, Proceedings of the National Academy of Sciences of the United States of America.

[130]  T. L. Ibbs,et al.  The Thermal Conductivity of Gas Mixtures , 1929 .

[131]  J. Beattie,et al.  A NEW EQUATION OF STATE FOR FLUIDS. III. THE NORMAL DENSITIES AND THE COMPRESSIBILITIES OF SEVERAL GASES AT 0 , 1928 .

[132]  J. Beattie,et al.  A NEW EQUATION OF STATE FOR FLUIDS. II. APPLICATION TO HELIUM, NEON, ARGON, HYDROGEN, NITROGEN, OXYGEN, AIR AND METHANE , 1928 .

[133]  H. E. Phipps The falling sphere viscometer and plasticity measurements , 1928 .

[134]  W. R. Dean XVI. Note on the motion of fluid in a curved pipe , 1927 .

[135]  J. Beattie,et al.  A NEW EQUATION OF STATE FOR FLUIDS. I. APPLICATION TO GASEOUS ETHYL ETHER AND CARBON DIOXIDE1 , 1927 .

[136]  A. Rankine A simple viscometer for gases , 1924 .

[137]  K. S. V. Dyke The Coefficients of Viscosity and of Slip of Air and of Carbon Dioxide by the Rotating Cylinder Method , 1923 .

[138]  E. L. Harrington A Redetermination of the Absolute Value of the Coefficient of Viscosity of Air , 1916 .

[139]  L. Gilchrist Eine absolute Bestimmung der inneren Reiburg der Luft = An absolute determination of the viscosity of air , 1913 .

[140]  R A Millikan,et al.  THE ISOLATION OF AN ION, A PRECISION MEASUREMENT OF ITS CHARGE, AND THE CORRECTION OF STOKES'S LAW. , 1910, Science.

[141]  M. Knudsen Die Gesetze der Molekularstrmung und der inneren Reibungsstrmung der Gase durch Rhren , 1909 .

[142]  C. Dieterici Ueber den kritischen Zustand , 1899 .