Revealing invisible cell phenotypes with conditional generative modeling

[1]  S. Haupt,et al.  High-content phenotyping of Parkinson's disease patient stem cell-derived midbrain dopaminergic neurons using machine learning classification , 2022, Stem cell reports.

[2]  A. Morrot,et al.  Eryptosis as a New Insight in Malaria Pathogenesis , 2022, Frontiers in Immunology.

[3]  S. Haupt,et al.  Machine learning-aided multidimensional phenotyping of Parkinson’s disease patient stem cell-derived midbrain dopaminergic neurons , 2022, bioRxiv.

[4]  Miao-Hsia Lin,et al.  In vitro genome editing rescues parkinsonism phenotypes in induced pluripotent stem cells-derived dopaminergic neurons carrying LRRK2 p.G2019S mutation , 2021, Stem cell research & therapy.

[5]  Avinatan Hassidim,et al.  Explaining in Style: Training a GAN to explain a classifier in StyleSpace , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[6]  Daniel Cohen-Or,et al.  ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[7]  Ming-Hsuan Yang,et al.  GAN Inversion: A Survey , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  W. Paul Segars,et al.  Medical Image Analysis , 2022 .

[9]  Daniel Cohen-Or,et al.  Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Youngjung Uh,et al.  Rethinking the Truly Unsupervised Image-to-Image Translation , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[11]  Marcel van Gerven,et al.  Explainable Deep Learning: A Field Guide for the Uninitiated , 2020, J. Artif. Intell. Res..

[12]  E. Tolosa,et al.  LRRK2 in Parkinson disease: challenges of clinical trials , 2020, Nature Reviews Neurology.

[13]  P. Gestraud,et al.  Targeting CCR5 trafficking to inhibit HIV-1 infection , 2019, Science Advances.

[14]  R. Wade-Martins,et al.  LRRK2 Is Recruited to Phagosomes and Co-recruits RAB8 and RAB10 in Human Pluripotent Stem Cell-Derived Macrophages , 2019, bioRxiv.

[15]  William Graf,et al.  Deep learning for cellular image analysis , 2019, Nature Methods.

[16]  J. Livet,et al.  Adult Neural Stem Cells and Multiciliated Ependymal Cells Share a Common Lineage Regulated by the Geminin Family Members , 2019, Neuron.

[17]  Cynthia Rudin,et al.  Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead , 2018, Nature Machine Intelligence.

[18]  Arvid Lundervold,et al.  An overview of deep learning in medical imaging focusing on MRI , 2018, Zeitschrift fur medizinische Physik.

[19]  N. White,et al.  Anaemia and malaria , 2018, Malaria Journal.

[20]  Florian Heigwer,et al.  Machine learning and image-based profiling in drug discovery , 2018, Current opinion in systems biology.

[21]  A. Genovesio,et al.  Compound Functional Prediction Using Multiple Unrelated Morphological Profiling Assays , 2018, SLAS technology.

[22]  Lalana Kagal,et al.  Explaining Explanations: An Overview of Interpretability of Machine Learning , 2018, 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA).

[23]  Jung-Woo Ha,et al.  StarGAN: Unified Generative Adversarial Networks for Multi-domain Image-to-Image Translation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[24]  M. Delgado-Rodríguez,et al.  Systematic review and meta-analysis. , 2017, Medicina intensiva.

[25]  Marc Berndl,et al.  Improving Phenotypic Measurements in High-Content Imaging Screens , 2017, bioRxiv.

[26]  Sepp Hochreiter,et al.  GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium , 2017, NIPS.

[27]  Anne E Carpenter,et al.  Opportunities and obstacles for deep learning in biology and medicine , 2017, bioRxiv.

[28]  Andrea Vedaldi,et al.  Interpretable Explanations of Black Boxes by Meaningful Perturbation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[29]  Avanti Shrikumar,et al.  Learning Important Features Through Propagating Activation Differences , 2017, ICML.

[30]  Ankur Taly,et al.  Axiomatic Attribution for Deep Networks , 2017, ICML.

[31]  Max Welling,et al.  Visualizing Deep Neural Network Decisions: Prediction Difference Analysis , 2017, ICLR.

[32]  Daniel Jurafsky,et al.  Understanding Neural Networks through Representation Erasure , 2016, ArXiv.

[33]  G. Privitera,et al.  An unusual cause of anemia in cirrhosis: spur cell anemia, a case report with review of literature , 2016, Gastroenterology and hepatology from bed to bench.

[34]  Beate Sick,et al.  Single-Cell Phenotype Classification Using Deep Convolutional Neural Networks , 2016, Journal of biomolecular screening.

[35]  Bolei Zhou,et al.  Learning Deep Features for Discriminative Localization , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Alexander Binder,et al.  On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation , 2015, PloS one.

[37]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[38]  Anne E Carpenter,et al.  Comparison of Methods for Image-Based Profiling of Cellular Morphological Responses to Small-Molecule Treatment , 2013, Journal of biomolecular screening.

[39]  Anne E Carpenter,et al.  Annotated high-throughput microscopy image sets for validation , 2012, Nature Methods.

[40]  Teun Bousema,et al.  Factors determining the occurrence of submicroscopic malaria infections and their relevance for control , 2012, Nature Communications.

[41]  Graham W. Taylor,et al.  Deconvolutional networks , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[42]  Rebecca E. Walls,et al.  High-Content Phenotypic Profiling of Drug Response Signatures across Distinct Cancer Cells , 2010, Molecular Cancer Therapeutics.

[43]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Polina Golland,et al.  Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning , 2009, Proceedings of the National Academy of Sciences.

[45]  Anne E Carpenter,et al.  CellProfiler: image analysis software for identifying and quantifying cell phenotypes , 2006, Genome Biology.

[46]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[47]  Jinsung Yoon,et al.  GENERATIVE ADVERSARIAL NETS , 2018 .

[48]  Harshad Rai,et al.  Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks , 2018 .

[49]  Stephen Lynch,et al.  Image Processing with Python , 2018 .

[50]  Pascal Vincent,et al.  Visualizing Higher-Layer Features of a Deep Network , 2009 .

[51]  J. Charles,et al.  A Sino-German λ 6 cm polarization survey of the Galactic plane I . Survey strategy and results for the first survey region , 2006 .

[52]  Dennis Child,et al.  The essentials of factor analysis , 1970 .

[53]  Joshua D. Warner,et al.  Distributed under Creative Commons Cc-by 4.0 Scikit-image: Image Processing in Python , 2022 .