BPX-preconditioning for isogeometric analysis

We consider elliptic PDEs (partial differential equations) in the framework of isogeometric analysis, i.e., we treat the physical domain by means of a B-spline or Nurbs mapping which we assume to be regular. The numerical solution of the PDE is computed by means of tensor product B-splines mapped onto the physical domain. We construct additive multilevel preconditioners and show that they are asymptotically optimal, i.e., the spectral condition number of the resulting stiffness matrix is independent of h. Together with a nested iteration scheme, this enables an iterative solution scheme of optimal linear complexity. The theoretical results are substantiated by numerical examples in two and three space dimensions.

[1]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[2]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[3]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[4]  Angela Kunoth,et al.  BPX-type Preconditioners for Second and Fourth Order Elliptic Problems on the Sphere , 2007, SIAM J. Numer. Anal..

[5]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[6]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[7]  O. Axelsson,et al.  Algebraic multilevel preconditioning methods, II , 1990 .

[8]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[9]  Giancarlo Sangalli,et al.  Anisotropic NURBS approximation in isogeometric analysis , 2012 .

[10]  P. Vassilevski,et al.  Algebraic multilevel preconditioning methods. I , 1989 .

[11]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[12]  Bert Jüttler,et al.  IETI – Isogeometric Tearing and Interconnecting , 2012, Computer methods in applied mechanics and engineering.

[13]  A. Kunoth,et al.  BPX-TYPE PRECONDITIONERS FOR 2ND AND 4TH ORDER ELLIPTIC PROBLEMS ON THE SPHERE , 2022 .

[14]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[15]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[16]  Angela Kunoth,et al.  Optimized wavelet preconditioning , 2009 .

[17]  D. Braess Finite Elements: Finite Elements , 2007 .

[18]  Angela Kunoth,et al.  B-Spline-Based Monotone Multigrid Methods , 2007, SIAM J. Numer. Anal..

[19]  Luca F. Pavarino,et al.  Overlapping Schwarz Methods for Isogeometric Analysis , 2012, SIAM J. Numer. Anal..

[20]  Luca F. Pavarino,et al.  BDDC PRECONDITIONERS FOR ISOGEOMETRIC ANALYSIS , 2013 .

[21]  H. Yserentant Erratum. On the Multi-Level Splitting of Finite Element Spaces.(Numer. Math. 49, 379-412 (1986)). , 1986 .

[22]  W. Dahmen,et al.  Multilevel preconditioning , 1992 .

[23]  J. Kraus,et al.  Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.