On the relationship between shock and particle velocities in single and bicrystal systems of Aluminum: A molecular dynamics study

[1]  P. Lakshmi Narayana,et al.  Dynamic Response of Single Crystal Al, Cu & Ni Upon Impact : MD and Ab-Initio Calculations , 2022, Journal of Dynamic Behavior of Materials.

[2]  G. K. Dey,et al.  Super heavy element Copernicium: Cohesive and electronic properties revisited , 2018 .

[3]  R. Mishra,et al.  Atomic simulations of twist grain boundary structures and deformation behaviors in aluminum , 2017 .

[4]  S. Chaturvedi,et al.  Multi-scale Computational Approach for Modelling Spallation at High Strain Rates in Single-Crystal Materials☆ , 2017 .

[5]  D. McDowell,et al.  Symmetric and asymmetric tilt grain boundary structure and energy in Cu and Al (and transferability to other fcc metals) , 2015, Integrating Materials and Manufacturing Innovation.

[6]  S. Chaturvedi,et al.  Multiscale simulations of damage of perfect crystal Cu at high strain rates , 2014 .

[7]  S. Chaturvedi,et al.  Effect of material damage on the spallation threshold of single crystal copper: a molecular dynamics study , 2011 .

[8]  Satish C. Gupta,et al.  Shock Hugoniot of osmium up to 800 GPa from first principles calculations , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[10]  M. Torrent,et al.  Compression curves of transition metals in the Mbar range: Experiments and projector augmented-wave calculations , 2008 .

[11]  Y. Ohishi,et al.  Evidence of a fcc-hcp transition in aluminum at multimegabar pressure. , 2006, Physical review letters.

[12]  M. Mezouar,et al.  Equations of state of six metals above 94 GPa , 2004 .

[13]  O. I. Butnev,et al.  Molecular Dynamics Simulation of Shock Wave Compression of Metals , 2002 .

[14]  Michael J. Mehl,et al.  Interatomic potentials for monoatomic metals from experimental data and ab initio calculations , 1999 .

[15]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[16]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[17]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[18]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[19]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[20]  G. Zimmerman,et al.  A new quotidian equation of state (QEOS) for hot dense matter , 1988 .

[21]  Jacobsen,et al.  Interatomic interactions in the effective-medium theory. , 1987, Physical review. B, Condensed matter.

[22]  R. A. Graham,et al.  Sandia shock compression database , 1986 .

[23]  W. Nellis,et al.  Shock compression of aluminum, copper, and tantalum , 1981 .

[24]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .