Loosely Guarded Fragment of First-Order Logic has the Finite Model Property

We show that the loosely guarded and packed fragments of first-order logic have the finite model property. We use a construction of Herwig and Hrushovski. We point out some consequences in temporal predicate logic and algebraic logic.

[1]  Erich Grädel,et al.  On the Restraining Power of Guards , 1999, Journal of Symbolic Logic.

[2]  Ian M. Hodkinson,et al.  Relation Algebras with n-Dimensional Relational Bases , 2000, Ann. Pure Appl. Log..

[3]  Frank Wolter,et al.  Decidable fragment of first-order temporal logics , 2000, Ann. Pure Appl. Log..

[4]  Mark Reynolds,et al.  The complexity of the temporal logic with "until" over general linear time , 2003, J. Comput. Syst. Sci..

[5]  John K. Truss,et al.  Generic Automorphisms of Homogeneous Structures , 1992 .

[6]  Johan van Benthem,et al.  Modal Languages and Bounded Fragments of Predicate Logic , 1998, J. Philos. Log..

[7]  D. Lascar,et al.  Extending partial automorphisms and the profinite topology on free groups , 1999 .

[8]  M. de Rijke,et al.  The guarded fragment: Ins and outs , 1999 .

[9]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[10]  J.F.A.K. van Benthem,et al.  Modal logic and classical logic , 1983 .

[11]  J.F.A.K. van Benthem,et al.  Modal Correspondence Theory , 1977 .

[12]  Johan van Benthem,et al.  Exploring logical dynamics , 1996, Studies in logic, language and information.

[13]  Martin Grohe Arity Hierarchies , 1996, Ann. Pure Appl. Log..

[14]  Maarten Marx,et al.  Tolerance Logic , 2001, J. Log. Lang. Inf..

[15]  Moshe Y. Vardi Why is Modal Logic So Robustly Decidable? , 1996, Descriptive Complexity and Finite Models.

[16]  Ian M. Hodkinson,et al.  Relation algebras form cylindric algebras, II , 2001, Ann. Pure Appl. Log..

[17]  R. Maddux Some varieties containing relation algebras , 1982 .

[18]  maarten marx Complexity of Modal Logics of RelationsMaarten MarxDepartment of Computing , 1997 .

[19]  Bernhard Herwig Extending partial isomorphisms on finite structures , 1995, Comb..

[20]  Bernhard Herwig Extending partial isomorphisms for the small index property of many ω-categorical structures , 1998 .

[21]  Szabolcs Mikulás,et al.  Mosaics and step-by-step. , 1999 .

[22]  Maarten Marx,et al.  Undecidable Relativizations of Algebras of Relations , 1999, J. Symb. Log..

[23]  D. Gabbay Expressive Functional Completeness in Tense Logic (Preliminary report) , 1981 .

[24]  Ehud Hrushovski,et al.  Extending partial isomorphisms of graphs , 1992, Comb..

[25]  Roger D. Maddux,et al.  A sequent calculus for relation algebras , 1983, Ann. Pure Appl. Log..

[26]  Ian M. Hodkinson,et al.  Finite algebras of relations are representable on finite sets , 1999, Journal of Symbolic Logic.

[27]  Stephan Tobies,et al.  A Tableau Algorithm for the Clique Guarded Fragment , 2000, Advances in Modal Logic.

[28]  J. Benthem DYNAMIC BITS AND PIECES , 1997 .