Chaos in a Simple Cellular Automaton Model of a Uniform Society

In this work we study the collective behavior in a model of a simplified homogeneous society. Each agent is modeled as a binary “perceptron”, receiving neighbors’ opinions as inputs and outputting one of two possible opinions, according to the conformist attitude and to the external pressure of mass media. For a neighborhood size greater than three, the system shows a very complex phase diagram, including a disordered phase and chaotic behavior. We present analytic calculations, mean fields approximation and numerical simulations for different values of the parameters.

[1]  Rosario N. Mantegna,et al.  Book Review: An Introduction to Econophysics, Correlations, and Complexity in Finance, N. Rosario, H. Mantegna, and H. E. Stanley, Cambridge University Press, Cambridge, 2000. , 2000 .

[2]  Hao Bai-lin Statphys 19: Proceedings of the 19th IUPAP International Conference on Statistical Physics , 1996 .

[3]  Franco Bagnoli,et al.  Opinion Formation and Phase Transitions in a Probabilistic Cellular Automaton with Two Absorbing States , 2002, ACRI.

[4]  Joan Adler,et al.  Percolation Structures and Processes , 1983 .

[5]  F. Bagnoli,et al.  Synchronization of non-chaotic dynamical systems , 2001 .

[6]  Peter Grassberger,et al.  Are damage spreading transitions generically in the universality class of directed percolation? , 1994, cond-mat/9409068.

[7]  Klaus G. Troitzsch,et al.  Modelling and simulation in the social sciences from the philosophy of science point of view , 1996 .

[8]  D. Sornette,et al.  Self-organized percolation model for stock market fluctuations , 1999, cond-mat/9906434.

[9]  On damage-spreading transitions , 1995, cond-mat/9508106.

[10]  H. Haken,et al.  Synergetics , 1988, IEEE Circuits and Devices Magazine.

[11]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[12]  Kunihiko Kaneko,et al.  Supertransients, spatiotemporal intermittency and stability of fully developed spatiotemporal chaos , 1990 .

[13]  Antonio Politi,et al.  Unpredictable behaviour in stable systems , 1993 .

[14]  Eytan Domany,et al.  An Algorithm-Independent Definition of Damage Spreading—Application to Directed Percolation , 1997 .

[15]  Franco Bagnoli,et al.  SYNCHRONIZATION AND MAXIMUM LYAPUNOV EXPONENTS OF CELLULAR AUTOMATA , 1998, cond-mat/9809275.

[16]  Frank Schweitzer,et al.  Phase transitions in social impact models of opinion formation , 2000 .

[17]  A. Robinson I. Introduction , 1991 .

[18]  Crutchfield,et al.  Are attractors relevant to turbulence? , 1988, Physical review letters.

[19]  Franco Bagnoli,et al.  De gustibus disputandum (forecasting opinions by knowledge networks) , 2004 .

[20]  Hubert Harrer Discrete time cellular neural networks , 1992, Int. J. Circuit Theory Appl..

[21]  S. Ruffo,et al.  Damage spreading and Lyapunov exponents in cellular automata , 1992 .

[22]  W. Weidlich,et al.  Concepts and Models of a Quantitative Sociology , 1983 .

[23]  Wolfgang Weidlich,et al.  Physics and social science — The approach of synergetics , 1991 .

[24]  Robin R. Vallacher,et al.  Dynamical Systems in Social Psychology , 1994 .

[25]  G. Cowan,et al.  Complexity Metaphors, Models, and Reality , 1994 .

[26]  F Bagnoli,et al.  Nature of phase transitions in a probabilistic cellular automaton with two absorbing states. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Leon O. Chua,et al.  The CNN paradigm , 1993 .

[28]  R. Solé,et al.  Lyapunov exponents in random Boolean networks , 1999, adap-org/9907001.