Universal Size Effect Law and Effect of Crack Depth on Quasi-Brittle Structure Strength

In cohesive fracture of quasi-brittle materials such as concrete, rock, fiber composites, tough ceramics, rigid foams, sea ice, and wood, one can distinguish six simple and easily modeled asymptotic cases: the asymptotic behaviors of very small and very large structures, structures failing at crack initiation from a smooth surface and those with a deep notch or preexisting deep crack, the purely statistical Weibull-type size effect, and the purely energetic (deterministic) size effect. Size effect laws governing the transition between some of these asymptotic cases have already been formulated. However, a general and smooth description of the complex transition between all of them has been lacking. Here, a smooth universal law bridging all of these asymptotic cases is derived and discussed. A special case of this law is a formula for the effect of notch or crack depth at fixed specimen size, which overcomes the limitations of a recently proposed empirical formula by Duan et al., 2003, 2004, 2006.

[1]  Xiaozhi Hu,et al.  Size effect on toughness induced by crack close to free surface , 2000 .

[2]  Zdenek P. Bazant,et al.  Energetic probabilistic size effect, its asymptotic properties and numerical applications , 2000 .

[3]  Z. Bažant,et al.  Scaling of quasibrittle fracture: asymptotic analysis , 1997 .

[4]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[5]  Hiroshi Tada,et al.  The stress analysis of cracks handbook , 2000 .

[6]  Qiang Yu Size Effect in Fracture of Concrete Specimens and Structures: New Problems and Progress , 2004 .

[7]  Z. Bažant Size Effect in Blunt Fracture: Concrete, Rock, Metal , 1984 .

[8]  Z. Bažant,et al.  Scaling of structural strength , 2003 .

[9]  Z. Bažant,et al.  Determination of fracture energy, process zone longth and brittleness number from size effect, with application to rock and conerete , 1990 .

[10]  W. Weibull A statistical theory of the strength of materials , 1939 .

[11]  G. I. Barenblatt The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks , 1959 .

[12]  M. Elices,et al.  A general bilinear fit for the softening curve of concrete , 1994 .

[13]  Zdeněk P. Bažant,et al.  Choice of standard fracture test for concrete and its statistical evaluation , 2002 .

[14]  H. Saunders,et al.  Advanced Fracture Mechanics , 1985 .

[15]  D. Broek The practical use of fracture mechanics , 1988 .

[16]  F. Wittmann,et al.  Explanation of size effect in concrete fracture using non-uniform energy distribution , 2002 .

[17]  Xiaozhi Hu,et al.  Boundary effect on concrete fracture and non-constant fracture energy distribution , 2003 .

[18]  Zdenek P. Bazant,et al.  Modulus of Rupture: Size Effect due to Fracture Initiation in Boundary Layer , 1995 .

[19]  W. Weibull,et al.  The phenomenon of rupture in solids , 1939 .

[20]  Zdenek P. Bazant,et al.  Scaling of Structural Failure , 1997 .

[21]  Z. Bažant,et al.  Scaling theory for quasibrittle structural failure. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Z. Bažant,et al.  Mechanics-based statistics of failure risk of quasibrittle structures and size effect on safety factors. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Drahomír Novák,et al.  PROBABILISTIC NONLOCAL THEORY FOR QUASIBRITTLE FRACTURE INITIATION AND SIZE EFFECT. I: THEORY , 2000 .

[24]  Xiaozhi Hu,et al.  Scaling of quasi-brittle fracture: Boundary and size effect , 2006 .

[25]  村上 敬宜,et al.  Stress intensity factors handbook , 1987 .

[26]  Zdeněk P. Bažant,et al.  Activation energy based extreme value statistics and size effect in brittle and quasibrittle fracture , 2007 .

[27]  H. Hartmann Handbuch der Physik. Herausgegeben von S. Flügge. Bd. V, Teil 1: Prinzipien der Quantentheorie 1, VI. 376 Seiten mit 7 Figuren. Springer Verlag, Berlin‐Göttingen‐Heidelberg 1958. Preis: DM 90,—. , 1961, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[28]  Z. Bažant,et al.  SIZE EFFECT IN TENSILE AND COMPRESSION FRACTURE OF CONCRETE STRUCTURES : COMPUTATIONAL MODELING AND DESIGN , 2022 .

[29]  Zdeněk P. Bažant,et al.  Energetic–statistical size effect simulated by SFEM with stratified sampling and crack band model , 2007 .

[30]  Yunping Xi,et al.  Statistical Size Effect in Quasi‐Brittle Structures: II. Nonlocal Theory , 1991 .

[31]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .

[32]  Drahomír Novák,et al.  PROBABILISTIC NONLOCAL THEORY FOR QUASIBRITTLE FRACTURE INITIATION AND SIZE EFFECT. II: APPLICATION , 2000 .