Universal Size Effect Law and Effect of Crack Depth on Quasi-Brittle Structure Strength
暂无分享,去创建一个
[1] Xiaozhi Hu,et al. Size effect on toughness induced by crack close to free surface , 2000 .
[2] Zdenek P. Bazant,et al. Energetic probabilistic size effect, its asymptotic properties and numerical applications , 2000 .
[3] Z. Bažant,et al. Scaling of quasibrittle fracture: asymptotic analysis , 1997 .
[4] W. Weibull. A Statistical Distribution Function of Wide Applicability , 1951 .
[5] Hiroshi Tada,et al. The stress analysis of cracks handbook , 2000 .
[6] Qiang Yu. Size Effect in Fracture of Concrete Specimens and Structures: New Problems and Progress , 2004 .
[7] Z. Bažant. Size Effect in Blunt Fracture: Concrete, Rock, Metal , 1984 .
[8] Z. Bažant,et al. Scaling of structural strength , 2003 .
[9] Z. Bažant,et al. Determination of fracture energy, process zone longth and brittleness number from size effect, with application to rock and conerete , 1990 .
[10] W. Weibull. A statistical theory of the strength of materials , 1939 .
[11] G. I. Barenblatt. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks , 1959 .
[12] M. Elices,et al. A general bilinear fit for the softening curve of concrete , 1994 .
[13] Zdeněk P. Bažant,et al. Choice of standard fracture test for concrete and its statistical evaluation , 2002 .
[14] H. Saunders,et al. Advanced Fracture Mechanics , 1985 .
[15] D. Broek. The practical use of fracture mechanics , 1988 .
[16] F. Wittmann,et al. Explanation of size effect in concrete fracture using non-uniform energy distribution , 2002 .
[17] Xiaozhi Hu,et al. Boundary effect on concrete fracture and non-constant fracture energy distribution , 2003 .
[18] Zdenek P. Bazant,et al. Modulus of Rupture: Size Effect due to Fracture Initiation in Boundary Layer , 1995 .
[19] W. Weibull,et al. The phenomenon of rupture in solids , 1939 .
[20] Zdenek P. Bazant,et al. Scaling of Structural Failure , 1997 .
[21] Z. Bažant,et al. Scaling theory for quasibrittle structural failure. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[22] Z. Bažant,et al. Mechanics-based statistics of failure risk of quasibrittle structures and size effect on safety factors. , 2006, Proceedings of the National Academy of Sciences of the United States of America.
[23] Drahomír Novák,et al. PROBABILISTIC NONLOCAL THEORY FOR QUASIBRITTLE FRACTURE INITIATION AND SIZE EFFECT. I: THEORY , 2000 .
[24] Xiaozhi Hu,et al. Scaling of quasi-brittle fracture: Boundary and size effect , 2006 .
[25] 村上 敬宜,et al. Stress intensity factors handbook , 1987 .
[26] Zdeněk P. Bažant,et al. Activation energy based extreme value statistics and size effect in brittle and quasibrittle fracture , 2007 .
[27] H. Hartmann. Handbuch der Physik. Herausgegeben von S. Flügge. Bd. V, Teil 1: Prinzipien der Quantentheorie 1, VI. 376 Seiten mit 7 Figuren. Springer Verlag, Berlin‐Göttingen‐Heidelberg 1958. Preis: DM 90,—. , 1961, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.
[28] Z. Bažant,et al. SIZE EFFECT IN TENSILE AND COMPRESSION FRACTURE OF CONCRETE STRUCTURES : COMPUTATIONAL MODELING AND DESIGN , 2022 .
[29] Zdeněk P. Bažant,et al. Energetic–statistical size effect simulated by SFEM with stratified sampling and crack band model , 2007 .
[30] Yunping Xi,et al. Statistical Size Effect in Quasi‐Brittle Structures: II. Nonlocal Theory , 1991 .
[31] Z. Bažant,et al. Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .
[32] Drahomír Novák,et al. PROBABILISTIC NONLOCAL THEORY FOR QUASIBRITTLE FRACTURE INITIATION AND SIZE EFFECT. II: APPLICATION , 2000 .