MALLIAVIN CALCULUS AND ANTICIPATIVE ITÔ FORMULAE FOR LÉVY PROCESSES

We introduce the forward integral with respect to a pure jump Levy process and prove an Ito formula for this integral. Then we use Mallivin calculus to establish a relationship between the forward integral and the Skorohod integral and apply this to obtain an Ito formula for the Skorohod integral.

[1]  Paul Krée,et al.  Calcul stochastique non adapte par rapport a la mesure aleatoire de poisson , 1988 .

[2]  R. Askey,et al.  LECTURES ON HERMITE AND LAGUERRE EXPANSIONS , 1994 .

[3]  Hebe de Azevedo Biagioni,et al.  A Nonlinear Theory of Generalized Functions , 1990 .

[4]  Nicolas Privault Equivalence of gradients on configuration spaces , 1999 .

[5]  Bernt Øksendal,et al.  A White Noise Approach to Stochastic Differential Equations Driven by Wiener and Poisson Processes , 1998 .

[6]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[7]  D. Surgailis On multiple Poisson stochastic integrals and associated Markov semigroups , 1984 .

[8]  Nicolas Privault,et al.  Chaotic Kabanov Formula for the Azéma Martingales , 2000 .

[9]  Mark H. A. Davis,et al.  Malliavin Monte Carlo Greeks for jump diffusions , 2006 .

[10]  Nicolas Privault Connections and Curvature in the Riemannian Geometry of Configuration Spaces , 2001 .

[11]  Bernt Øksendal,et al.  White noise generalizations of the Clark-Haussmann-Ocone theorem with application to mathematical finance , 2000, Finance Stochastics.

[12]  Nicolas Privault,et al.  Poisson stochastic integration in Hilbert spaces , 1999 .

[13]  Fred Espen Benth,et al.  A Remark on the Equivalence between Poisson and Gaussian Stochastic Partial Differential Equations , 1998 .

[14]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[15]  Independence of a Class of Multiple Stochastic Integrals , 1999 .

[16]  Philippe Biane,et al.  Calcul stochastique non-commutatif , 1995 .

[17]  Jean Picard,et al.  On the existence of smooth densities for jump processes , 1996 .

[18]  Jürgen Potthoff,et al.  On a dual pair of spaces of smooth and generalized random variables , 1995 .

[19]  Kiyosi Itô,et al.  On stochastic processes (I) , 1941 .

[20]  Bernt Øksendal,et al.  White Noise Analysis for Lévy Processes. , 2004 .

[21]  David Nualart,et al.  Stochastic calculus with anticipating integrands , 1988 .

[22]  Jorge A. León,et al.  On Lévy processes, Malliavin calculus and market models with jumps , 2002, Finance Stochastics.

[23]  D. Nualart,et al.  Anticipative calculus for the Poisson process based on the Fock space , 1990 .

[24]  A generalized Itô formula for an extended stochastic integral with respect to Poisson random measure , 1974 .

[25]  Bernt Øksendal,et al.  Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach , 1996 .

[26]  Agnès Sulem,et al.  UTILITY MAXIMIZATION IN AN INSIDER INFLUENCED MARKET , 2006 .

[27]  Bernt Øksendal,et al.  A UNIVERSAL OPTIMAL CONSUMPTION RATE FOR AN INSIDER , 2006 .

[28]  Michael Cranston,et al.  The malliavin calculus for pure jump processes and applications to local time , 1986 .

[29]  B. Øksendal,et al.  A General Stochastic Calculus Approach to Insider Trading , 2005 .

[30]  Frank Proske,et al.  Explicit Representation of the Minimal Variance Portfolio in Markets Driven by Lévy Processes , 2003 .

[31]  P. Protter Stochastic integration and differential equations , 1990 .

[32]  Bernt Øksendal,et al.  White Noise of Poisson Random Measures , 2004 .

[33]  A. Skorohod,et al.  Extended stochastic integrals , 1975 .

[34]  On Extended Stochastic Intervals , 1976 .

[35]  Francesco Russo,et al.  Forward, backward and symmetric stochastic integration , 1993 .

[36]  Nicolas Privault An extension of stochastic calculus to certain non-Markovian processes , 1997 .

[37]  Anticipative calculus for Lévy processes and stochastic differential equations , 2004 .

[38]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[39]  Pierre-Louis Lions,et al.  Applications of Malliavin calculus to Monte Carlo methods in finance , 1999, Finance Stochastics.

[40]  B. Øksendal,et al.  Partial observation control in an anticipating environment , 2004 .

[41]  Arne Løkka,et al.  Martingale Representation of Functionals of Lévy Processes , 2004 .

[42]  Bernt Øksendal,et al.  Optimal portfolio for an insider in a market driven by Lévy processes , 2006 .

[43]  Kiyosi Itô,et al.  SPECTRAL TYPE OF THE SHIFT TRANSFORMATION OF DIFFERENTIAL PROCESSES WITH STATIONARY INCREMENTS( , 1956 .

[44]  D. Nualart,et al.  Chaotic and predictable representation for L'evy Processes , 2000 .

[45]  Pierre-Louis Lions,et al.  Applications of Malliavin calculus to Monte-Carlo methods in finance. II , 2001, Finance Stochastics.

[46]  B. Øksendal AN INTRODUCTION TO MALLIAVIN CALCULUS WITH APPLICATIONS TO ECONOMICS , 1996 .

[47]  B. Øksendal,et al.  Optimal Smooth Portfolio Selection for an Insider , 2007, Journal of Applied Probability.

[48]  Paul Malliavin,et al.  Stochastic Analysis , 1997, Nature.

[49]  Amiel Feinstein,et al.  Applications of harmonic analysis , 1964 .

[50]  B. Øksendal,et al.  MINIMAL VARIANCE HEDGING FOR INSIDER TRADING , 2006 .

[51]  J. Picard Formules de dualité sur l'espace de Poisson , 1996 .

[52]  I. Karatzas,et al.  A generalized clark representation formula, with application to optimal portfolios , 1991 .

[53]  D. Applebaum Covariant Poisson Fields In Fock Space , 1996 .

[54]  Josep Vives,et al.  A Duality Formula on the Poisson Space and Some Applications , 1995 .

[55]  J. Jacod,et al.  Malliavin calculus for processes with jumps , 1987 .

[56]  Peter Kuster,et al.  Malliavin calculus for processes with jumps , 1991 .