MALLIAVIN CALCULUS AND ANTICIPATIVE ITÔ FORMULAE FOR LÉVY PROCESSES
暂无分享,去创建一个
Bernt Øksendal | Thilo Meyer-Brandis | Frank Proske | Giulia Di Nunno | B. Øksendal | F. Proske | T. Meyer-Brandis | G. Nunno
[1] Paul Krée,et al. Calcul stochastique non adapte par rapport a la mesure aleatoire de poisson , 1988 .
[2] R. Askey,et al. LECTURES ON HERMITE AND LAGUERRE EXPANSIONS , 1994 .
[3] Hebe de Azevedo Biagioni,et al. A Nonlinear Theory of Generalized Functions , 1990 .
[4] Nicolas Privault. Equivalence of gradients on configuration spaces , 1999 .
[5] Bernt Øksendal,et al. A White Noise Approach to Stochastic Differential Equations Driven by Wiener and Poisson Processes , 1998 .
[6] D. Nualart. The Malliavin Calculus and Related Topics , 1995 .
[7] D. Surgailis. On multiple Poisson stochastic integrals and associated Markov semigroups , 1984 .
[8] Nicolas Privault,et al. Chaotic Kabanov Formula for the Azéma Martingales , 2000 .
[9] Mark H. A. Davis,et al. Malliavin Monte Carlo Greeks for jump diffusions , 2006 .
[10] Nicolas Privault. Connections and Curvature in the Riemannian Geometry of Configuration Spaces , 2001 .
[11] Bernt Øksendal,et al. White noise generalizations of the Clark-Haussmann-Ocone theorem with application to mathematical finance , 2000, Finance Stochastics.
[12] Nicolas Privault,et al. Poisson stochastic integration in Hilbert spaces , 1999 .
[13] Fred Espen Benth,et al. A Remark on the Equivalence between Poisson and Gaussian Stochastic Partial Differential Equations , 1998 .
[14] K. Parthasarathy. An Introduction to Quantum Stochastic Calculus , 1992 .
[15] Independence of a Class of Multiple Stochastic Integrals , 1999 .
[16] Philippe Biane,et al. Calcul stochastique non-commutatif , 1995 .
[17] Jean Picard,et al. On the existence of smooth densities for jump processes , 1996 .
[18] Jürgen Potthoff,et al. On a dual pair of spaces of smooth and generalized random variables , 1995 .
[19] Kiyosi Itô,et al. On stochastic processes (I) , 1941 .
[20] Bernt Øksendal,et al. White Noise Analysis for Lévy Processes. , 2004 .
[21] David Nualart,et al. Stochastic calculus with anticipating integrands , 1988 .
[22] Jorge A. León,et al. On Lévy processes, Malliavin calculus and market models with jumps , 2002, Finance Stochastics.
[23] D. Nualart,et al. Anticipative calculus for the Poisson process based on the Fock space , 1990 .
[24] A generalized Itô formula for an extended stochastic integral with respect to Poisson random measure , 1974 .
[25] Bernt Øksendal,et al. Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach , 1996 .
[26] Agnès Sulem,et al. UTILITY MAXIMIZATION IN AN INSIDER INFLUENCED MARKET , 2006 .
[27] Bernt Øksendal,et al. A UNIVERSAL OPTIMAL CONSUMPTION RATE FOR AN INSIDER , 2006 .
[28] Michael Cranston,et al. The malliavin calculus for pure jump processes and applications to local time , 1986 .
[29] B. Øksendal,et al. A General Stochastic Calculus Approach to Insider Trading , 2005 .
[30] Frank Proske,et al. Explicit Representation of the Minimal Variance Portfolio in Markets Driven by Lévy Processes , 2003 .
[31] P. Protter. Stochastic integration and differential equations , 1990 .
[32] Bernt Øksendal,et al. White Noise of Poisson Random Measures , 2004 .
[33] A. Skorohod,et al. Extended stochastic integrals , 1975 .
[34] On Extended Stochastic Intervals , 1976 .
[35] Francesco Russo,et al. Forward, backward and symmetric stochastic integration , 1993 .
[36] Nicolas Privault. An extension of stochastic calculus to certain non-Markovian processes , 1997 .
[37] Anticipative calculus for Lévy processes and stochastic differential equations , 2004 .
[38] Ken-iti Sato. Lévy Processes and Infinitely Divisible Distributions , 1999 .
[39] Pierre-Louis Lions,et al. Applications of Malliavin calculus to Monte Carlo methods in finance , 1999, Finance Stochastics.
[40] B. Øksendal,et al. Partial observation control in an anticipating environment , 2004 .
[41] Arne Løkka,et al. Martingale Representation of Functionals of Lévy Processes , 2004 .
[42] Bernt Øksendal,et al. Optimal portfolio for an insider in a market driven by Lévy processes , 2006 .
[43] Kiyosi Itô,et al. SPECTRAL TYPE OF THE SHIFT TRANSFORMATION OF DIFFERENTIAL PROCESSES WITH STATIONARY INCREMENTS( , 1956 .
[44] D. Nualart,et al. Chaotic and predictable representation for L'evy Processes , 2000 .
[45] Pierre-Louis Lions,et al. Applications of Malliavin calculus to Monte-Carlo methods in finance. II , 2001, Finance Stochastics.
[46] B. Øksendal. AN INTRODUCTION TO MALLIAVIN CALCULUS WITH APPLICATIONS TO ECONOMICS , 1996 .
[47] B. Øksendal,et al. Optimal Smooth Portfolio Selection for an Insider , 2007, Journal of Applied Probability.
[48] Paul Malliavin,et al. Stochastic Analysis , 1997, Nature.
[49] Amiel Feinstein,et al. Applications of harmonic analysis , 1964 .
[50] B. Øksendal,et al. MINIMAL VARIANCE HEDGING FOR INSIDER TRADING , 2006 .
[51] J. Picard. Formules de dualité sur l'espace de Poisson , 1996 .
[52] I. Karatzas,et al. A generalized clark representation formula, with application to optimal portfolios , 1991 .
[53] D. Applebaum. Covariant Poisson Fields In Fock Space , 1996 .
[54] Josep Vives,et al. A Duality Formula on the Poisson Space and Some Applications , 1995 .
[55] J. Jacod,et al. Malliavin calculus for processes with jumps , 1987 .
[56] Peter Kuster,et al. Malliavin calculus for processes with jumps , 1991 .