Interactions between surface conditions, the Mediter-ranean Sea, and cave climate within two littoral caves in Mallorca: implications for the formation of phreatic overgrowths on speleothems

Phreatic overgrowths on speleothems from Mallorca’s littoral caves are valuable markers of former sea-level stands. These carbonate encrustations form as CO2 degasses from brackish cave water that is hydrologically connected to the Mediterranean Sea. This study uses time series analysis to document relationships between surface conditions of temperature, barometric pressure, precipitation, tidal level of the Mediterranean Sea, and the coastal caves’ microenvironment of temperature, partial pressure of CO2 (pCO2), and water level to contextualize overgrowth formation in Cova des Pas de Vallgornera (Vallgornera) and Coves del Drac (Drac). Water level in both caves was an attenuated semidiurnal function of Mediterranean Sea level with a lag of about four hours. The impact of individual rainfall events on cave water level was negligible during the study period. pCO2 of cave air at both sites reached an annual maximum in September and decreased rapidly when surface air temperature fell below the cave air temperature (mean ~19 8C). As this threshold was reached, cooler and denser tropospheric air descended into the caves, initiating cave ventilation and displacing high-pCO2 cave air that had accumulated. Observed pCO2 was lower in Drac than in Vallgornera, and had small daily fluctuations because of bigger passages, fewer constrictions, and a large collapse entrance. The frequency and magnitude of pCO2 fluctuations were higher in Vallgornera than in Drac, with both caves showing twicedaily water level maxima causing displacement of high-pCO2 air from the cave alternating with water level minima causing tropospheric air to enter the cave via a ‘‘piston effect.’’ A secondary control on pCO2 variation can be attributed to variation in tropospheric barometric pressure. Thus, the geochemical conditions favorable for overgrowth formation are, in part, the result of this tidally-controlled cycle of cave-water level. The cycle causes cavetroposphere air exchange that drives CO2 degassing, and therefore, the formation of phreatic overgrowths on speleothems.

[1]  C. Cosma,et al.  Radon survey in caves from Mallorca Island, Spain. , 2015, The Science of the total environment.

[2]  D. Richards,et al.  Coastal caves and sinkholes , 2015 .

[3]  B. Onac,et al.  Groundwater geochemistry observations in littoral caves of Mallorca (western Mediterranean): implications for deposition of phreatic overgrowths on speleothems , 2014 .

[4]  A. Mulet,et al.  Cova des Pas de Vallgornera, (Mallorca, Spain): history of exploration and cave description , 2014 .

[5]  J. Fornós,et al.  Geologic constraints and speleogenesis of Cova des Pas de Vallgornera, a complex coastal cave from Mallorca Island (Western Mediterranean). , 2014 .

[6]  A. Leis,et al.  Concentration and stable carbon isotopic composition of CO2 in cave air of Postojnska jama, Slovenia , 2013 .

[7]  P. Tuccimei,et al.  Phreatic Overgrowths on Speleothems (POS) from Mallorca, Spain: Updating forty years of research , 2012 .

[8]  Egyéb The Sea Level , 1941, Science.

[9]  A. Soler,et al.  Ventilation effects in a karstic show cave and in its vadose environment, Nerja, Southern Spain , 2011, Carbonates and Evaporites.

[10]  M. Soligo,et al.  Constraining Holocene sea levels using U‐Th ages of phreatic overgrowths on speleothems from coastal caves in Mallorca (Western Mediterranean) , 2010 .

[11]  P. Tuccimei,et al.  Sea-Level Highstand 81,000 Years Ago in Mallorca , 2010, Science.

[12]  J. Ginés EL KARST LITORAL EN EL LEVANTE DE MALLORCA: Una aproximación al conocimiento de su morfogénesis y cronología , 2009 .

[13]  M. Soligo,et al.  Precipitation of phreatic overgrowths at the water table of meteoric-marine mixing zones in coastal cave systems. A useful tool in sea level change reconstruction. , 2009 .

[14]  G. Badino THE LEGEND OF CARBON DIOXIDE HEAVINESS , 2009 .

[15]  G. Henderson,et al.  Report of a three-year monitoring programme at Heshang Cave, Central China , 2008 .

[16]  I. Vadillo,et al.  Carbon dioxide concentration in air within the Nerja Cave(Malaga, Andalusia, Spain) , 2008 .

[17]  H. Jourde,et al.  Time series analyses for Karst/River interactions assessment: Case of the Coulazou river (southern France) , 2008 .

[18]  MaryLynn Musgrove,et al.  Seasonal Variations in Modern Speleothem Calcite Growth in Central Texas, U.S.A. , 2007 .

[19]  J. Ginés,et al.  Eogenetic karst, glacioeustatic cave pools and anchialine environments on Mallorca Island: a discussion of coastal speleogenesis. , 2007 .

[20]  Bernat Clamor,et al.  Cavitats costaneres de les Balears generades a la zona de mescla, amb importants continuacions subaquàtiques , 2007 .

[21]  G. Panagopoulos,et al.  The contribution of time series analysis to the study of the hydrodynamic characteristics of the karst systems: Application on two typical karst aquifers of Greece (Trifilia, Almyros Crete) , 2006 .

[22]  F. McDermott,et al.  Carbon dioxide sources, sinks, and spatial variability in shallow temperate zone caves : evidence from Ballynamintra Cave, Ireland. , 2006 .

[23]  P. Tuccimei,et al.  Last interglacial sea level changes in Mallorca island (Western Mediterranean). High precision U-series data from phreatic overgrowths on speleothems , 2006 .

[24]  Christoph Spötl,et al.  Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves , 2005 .

[25]  Ji-hoon Kim,et al.  Use of time series analysis for the identification of tidal effect on groundwater in the coastal area of Kimje, Korea , 2005 .

[26]  P. Tuccimei,et al.  Late Pleistocene Paleoclimates and sea-level change in the Mediterranean as inferred from stable isotope and U-series studies of overgrowths on speleothems, Mallorca, Spain , 2000 .

[27]  P. Villar,et al.  Control estructural de las mineralizaciones de W-As-Au de Mina Saturno: (Salamanca) , 2000 .

[28]  Fernando de Rojas Martínez-Parets Consideración sobre los mecanismos de absorción y depósito en las convenciones y protocolos sobre el cambio climático , 2000 .

[29]  A. Mangin,et al.  Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France) , 1998 .

[30]  J. Gordon,et al.  Introduction to the Quaternary , 1998 .

[31]  A. Pulido-Bosch,et al.  Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis , 1995 .

[32]  J. Fornós,et al.  La cova des Pas de Vallgornera (Llucmajor, Mallorca). La cavitat de major desenvolupament de les illes Balears , 1993 .

[33]  P. Hearty New data on the pleistocene of Mallorca , 1987 .

[34]  J. Goy,et al.  Synthesis of the quaternary in the almeria littoral neotectonic activity and its morphologic features, western betics, Spain , 1986 .

[35]  G. Miller,et al.  Aminostratigraphy of Quaternary shorelines in the Mediterranean basin , 1986 .

[36]  C. Ek,et al.  Carbon dioxide in cave atmospheres. New results in belgium and comparison with some other countries , 1985 .

[37]  Á. Ginés,et al.  Morfología, estructura y origen de los espeleotemas epiacuáticos , 1979 .

[38]  K. Butzer,et al.  Coastal Stratigraphy of Southern Mallorca and Its Implications for the Pleistocene Chronology of the Mediterranean Sea , 1962, The Journal of Geology.