Planar Bichromatic Bottleneck Spanning Trees

Given a set $P$ of $n$ red and blue points in the plane, a \emph{planar bichromatic spanning tree} of $P$ is a spanning tree of $P$, such that each edge connects between a red and a blue point, and no two edges intersect. In the bottleneck planar bichromatic spanning tree problem, the goal is to find a planar bichromatic spanning tree $T$, such that the length of the longest edge in $T$ is minimized. In this paper, we show that this problem is NP-hard for points in general position. Moreover, we present a polynomial-time $(8\sqrt{2})$-approximation algorithm, by showing that any bichromatic spanning tree of bottleneck $\lambda$ can be converted to a planar bichromatic spanning tree of bottleneck at most $8\sqrt{2}\lambda$.

[1]  Paz Carmi,et al.  Approximating the bottleneck plane perfect matching of a point set , 2013, Comput. Geom..

[2]  Sanjeev Arora,et al.  Approximation Schemes for Degree-Restricted MST and Red–Blue Separation Problems , 2004, Algorithmica.

[3]  Mikio Kano,et al.  Discrete Geometry on Red and Blue Points in the Plane — A Survey — , 2020 .

[4]  David R. Wood,et al.  Edge-Removal and Non-Crossing Configurations in Geometric Graphs , 2010, Discret. Math. Theor. Comput. Sci..

[5]  David Lichtenstein,et al.  Planar Formulae and Their Uses , 1982, SIAM J. Comput..

[6]  Maarten Löffler,et al.  Planar bichromatic minimum spanning trees , 2009, J. Discrete Algorithms.

[7]  Michiel H. M. Smid,et al.  Bottleneck Bichromatic Plane Matching of Points , 2014, CCCG.

[8]  Jean Cardinal,et al.  Matching Points with Things , 2010, LATIN.

[9]  Erik D. Demaine,et al.  Separating Point Sets in Polygonal Environments , 2005, Int. J. Comput. Geom. Appl..

[10]  Matthew J. Katz,et al.  Bottleneck non-crossing matching in the plane , 2012, Comput. Geom..

[11]  Michiel H. M. Smid,et al.  Maximum Plane Trees in Multipartite Geometric Graphs , 2018, Algorithmica.

[12]  Marc Noy,et al.  Bipartite Embeddings of Trees in the Plane , 1999, Discret. Appl. Math..

[13]  Hazel Everett,et al.  An optimal algorithm for the (≤ k)-levels, with applications to separation and transversal problems , 1993, SCG '93.

[14]  Adrian Dumitrescu,et al.  Matching colored points in the plane: Some new results , 2001, Comput. Geom..

[15]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[16]  János Pach,et al.  Partitioning Colored Point Sets into Monochromatic Parts , 2002, Int. J. Comput. Geom. Appl..

[17]  Michiel H. M. Smid,et al.  Spanning Trees in Multipartite Geometric Graphs , 2017, Algorithmica.

[18]  Noga Alon,et al.  Long non-crossing configurations in the plane , 1993, SCG '93.

[19]  Mariette Yvinec,et al.  Computing Largest Circles Separating Two Sets of Segments , 2000, Int. J. Comput. Geom. Appl..

[20]  Harry G. Mairson,et al.  Reporting and Counting Intersections Between Two Sets of Line Segments , 1988 .

[21]  Otfried Cheong,et al.  Euclidean minimum spanning trees and bichromatic closest pairs , 1990, SCG '90.

[22]  Mikhail J. Atallah,et al.  On Connecting Red and Blue Rectilinear Polygonal Obstacles with Nonintersecting Monotone Rectilinear Paths , 2001, Int. J. Comput. Geom. Appl..

[23]  Pankaj K. Agarwal,et al.  Partitioning arrangements of lines II: Applications , 2011, Discret. Comput. Geom..