Temporal reasoning in trajectories using an ontological modelling approach

Nowadays, with a growing use of location-aware, wirelessly connected, mobile devices, we can easily capture trajectories of mobile objects. To exploit these raw trajectories, we need to enhance them with semantic information. Several research elds are currently focusing on semantic trajectories to support inferences and queries to help users validating and discovering more knowledge about mobile objects. The inference mechanism is needed for queries on semantic trajectories connected to other sources of information. Time and space knowledge are fundamental sources of information used by the inference operation on semantic trajectories. This article discusses new approach for inference mechanisms on semantic trajectories. The proposed solution is based on an ontological approach for modelling semantic trajectories integrating time concepts and rules. We present a case study with experiments, optimization and evaluation to show the complexity of inference and queries. Then, we introduce a re nement algorithm based on temporal neighbour to enhance the temporal inference. The results show the positive impact of our proposal on reducing the complexity of the inference mechanism.

[1]  Stefano Spaccapietra,et al.  A Hybrid Model and Computing Platform for Spatio-semantic Trajectories , 2010, ESWC.

[2]  J. Euzenat,et al.  Ontology Matching , 2007, Springer Berlin Heidelberg.

[3]  Stefano Spaccapietra,et al.  SeMiTri: a framework for semantic annotation of heterogeneous trajectories , 2011, EDBT/ICDT '11.

[4]  Jerry R. Hobbs,et al.  An ontology of time for the semantic web , 2004, TALIP.

[5]  Satya S. Sahoo,et al.  A Survey of Current Approaches for Mapping of Relational Databases to RDF , 2009 .

[6]  Miriam Baglioni,et al.  An Ontology-Based Approach for the Semantic Modelling and Reasoning on Trajectories , 2008, ER Workshops.

[7]  Daniel J. Abadi,et al.  Scalable Semantic Web Data Management Using Vertical Partitioning , 2007, VLDB.

[8]  Alain Bouju,et al.  Une approche ontologique pour la modélisation et le raisonnement sur les trajectoires. Prise en compte des règles métiers, spatiales et temporelles , 2012, Tech. Sci. Informatiques.

[9]  Daniel P. Miranker,et al.  Survey of directly mapping SQL databases to the Semantic Web , 2011, The Knowledge Engineering Review.

[10]  Su Shan-w ISO 19108 Geographic Information—Temporal Schema and It′s 13 Temporal Relationships , 2004 .

[11]  Amit P. Sheth,et al.  A framework to support spatial, temporal and thematic analytics over semantic web data , 2008 .

[12]  Vania Bogorny,et al.  A Conceptual Data Model for Trajectory Data Mining , 2010, GIScience.

[13]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[14]  Dominique Barth,et al.  Indexing in-Networks Trajectorys Flows , 2011 .

[15]  Hyoil Han,et al.  A survey on ontology mapping , 2006, SGMD.

[16]  Souripriya Das,et al.  Database Technologies for RDF , 2009, Reasoning Web.

[17]  Michael A. Fedak,et al.  TWO APPROACHES TO COMPRESSING AND INTERPRETING TIME‐DEPTH INFORMATION AS AS COLLECTED BY TIME‐DEPTH RECORDERS AND SATELLITE‐LINKED DATA RECORDERS , 2001 .

[18]  Fabio Porto,et al.  A conceptual view on trajectories , 2008, Data Knowl. Eng..

[19]  Alain Bouju,et al.  Time Integration in Semantic Trajectories Using an Ontological Modelling Approach , 2012, ADBIS Workshops.