Representations of ordered semigroups and the Physical concept of Entropy

The abstract concept of entropy is interpreted through the concept of numerical representation of a totally preordered set so that the concept of composition of systems or additivity of entropy can be analyzed through the study of additive representations of totally ordered semigroups.

[1]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[2]  R. Giles,et al.  Mathematical Foundations of Thermodynamics , 1964 .

[3]  S. Angus,et al.  Foundations of Thermodynamics , 1958, Nature.

[4]  Juan Carlos Candeal,et al.  Topological Additively Representable Semigroups , 1997 .

[5]  Patrick Suppes,et al.  Foundations of measurement , 1971 .

[6]  G. Debreu Mathematical Economics: Continuity properties of Paretian utility , 1964 .

[7]  G. Debreu Mathematical Economics: Representation of a preference ordering by a numerical function , 1983 .

[8]  Juan Carlos Candeal,et al.  Archimedeaness and additive utility on totally ordered semigroups , 1996 .

[9]  Karl H. Hofmann,et al.  Linearly ordered semigroups: Historical origins and A.H. Clifford's influence , 1995 .

[10]  R. J. Koch,et al.  The theory of topological semigroups , 1986 .

[11]  Magalì E. Zuanon,et al.  Representation of preference orderings on totally ordered semigroups , 2000 .

[12]  Jaap Van Brakel,et al.  Foundations of measurement , 1983 .

[13]  B. Girotto,et al.  On the axiomatic treatment of the ϕ-mean , 1995 .

[14]  E. Lieb,et al.  A Guide to Entropy and the Second Law of Thermodynamics , 1998, math-ph/9805005.

[15]  E. Induráin,et al.  Extensive Measurement: Continuous Additive Utility Functions on Semigroups , 1996 .

[16]  A. A. J. Marley,et al.  Abstract one-parameter families of commutative learning operators , 1967 .

[17]  Zsolt Páles,et al.  The associativity equation revisited , 1989 .

[18]  G. Cantor Beiträge zur Begründung der transfiniten Mengenlehre , 1897 .

[19]  G. Cantor,et al.  Beiträge zur Begründung der transfiniten Mengenlehre , 1895 .