The impact of future sea-level rise on the global tides

Tides are a key component in coastal extreme water levels. Possible changes in the tides caused by mean sea-level rise (SLR) are therefore of importance in the analysis of coastal flooding, as well as many other applications. We investigate the effect of future SLR on the tides globally using a fully global forward tidal model: OTISmpi. Statistical comparisons of the modelled and observed tidal solutions demonstrate the skill of the refined model setup with no reliance on data assimilation. We simulate the response of the four primary tidal constituents to various SLR scenarios. Particular attention is paid to future changes at the largest 136 coastal cities, where changes in water level would have the greatest impact. Spatially uniform SLR scenarios ranging from 0.5 to 10 m with fixed coastlines show that the tidal amplitudes in shelf seas globally respond strongly to SLR with spatially coherent areas of increase and decrease. Changes in the M2 and S2 constituents occur globally in most shelf seas, whereas changes in K1 and O1 are confined to Asian shelves. With higher SLR tidal changes are often not proportional to the SLR imposed and larger portions of mean high water (MHW) changes are above proportional. Changes in MHW exceed ±10% of the SLR at ~10% of coastal cities. SLR scenarios allowing for coastal recession tend increasingly to result in a reduction in tidal range. The fact that the fixed and recession shoreline scenarios result mainly in changes of opposing sign is explained by the effect of the perturbations on the natural period of oscillation of the basin. Our results suggest that coastal management strategies could influence the sign of the tidal amplitude change. The effect of a spatially varying SLR, in this case fingerprints of the initial elastic response to ice mass loss, modestly alters the tidal response with the largest differences at high latitudes.

[1]  R. Nicholls,et al.  A comparison of the main methods for estimating probabilities of extreme still water levels , 2010 .

[2]  Malte Müller,et al.  The influence of changing stratification conditions on barotropic tidal transport and its implications for seasonal and secular changes of tides , 2012 .

[3]  R. Ray Secular changes in the solar semidiurnal tide of the western North Atlantic Ocean , 2009 .

[4]  J. Wolf,et al.  UK Climate Projections science report: Marine and coastal projections , 2009 .

[5]  Ryan L. Sriver,et al.  Toward a physically plausible upper bound of sea-level rise projections , 2012, Climatic Change.

[6]  K. Horsburgh,et al.  The impact of future sea-level rise on the European Shelf tides , 2012 .

[7]  D. Stammer,et al.  Projecting twenty-first century regional sea-level changes , 2014, Climatic Change.

[8]  Chris W. Hughes,et al.  Identifying the causes of sea-level change , 2009 .

[9]  H. Gerritsen,et al.  A modelling study of tidally induced equilibrium sand balances in the North Sea during the Holocene , 1998 .

[10]  X. H. Wang,et al.  Modeling studies of the far-field effects of tidal flat reclamation on tidal dynamics in the East China Seas , 2013 .

[11]  Mark D. Pickering The impact of future sea-level rise on the tides , 2014 .

[12]  R. M. Austin Modelling Holocene tides on the NW European continental shelf , 1991 .

[13]  J. A. Mattias Green,et al.  Sea level rise and tidal power plants in the Gulf of Maine , 2013 .

[14]  Griffiths,et al.  Modeling of Polar Ocean Tides at the Last Glacial Maximum: Amplification, Sensitivity, and Climatological Implications , 2009 .

[15]  D. Jay Evolution of tidal amplitudes in the eastern Pacific Ocean , 2009 .

[16]  K. VonderMühll Ueber die Bewegung tropfbarer Flüssigkeiten in Gefässen , 1886 .

[17]  F. Hollebrandse Temporal development of the tidal range in the southern North Sea , 2005 .

[18]  E. W. Schwiderski,et al.  On charting global ocean tides , 1980 .

[19]  Gary D. Egbert,et al.  Estimates of M2 Tidal Energy Dissipation from TOPEX/Poseidon Altimeter Data , 2001 .

[20]  S. Hanson,et al.  A global ranking of port cities with high exposure to climate extremes , 2011 .

[21]  Nathaniel G. Plant,et al.  Tidal hydrodynamics under future sea level rise and coastal morphology in the Northern Gulf of Mexico , 2016 .

[22]  David Pugh,et al.  Changing sea levels : effects of tides, weather, and climate , 2004 .

[23]  P. Woodworth,et al.  Integrated effects of climate change on coastal extreme sea levels , 2001 .

[24]  J. A. Mattias Green,et al.  Tides, sea-level rise and tidal power extraction on the European shelf , 2012, Ocean Dynamics.

[25]  G. D. Egbert,et al.  Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data , 2000, Nature.

[26]  R. Nicholls,et al.  Planning for long-term coastal change: experiences from England and Wales , 2013 .

[27]  N. White,et al.  Sea-Level Rise from the Late 19th to the Early 21st Century , 2011 .

[28]  Robert E. Kopp,et al.  Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta—the Netherlands as an example , 2011 .

[29]  Arthur van Dam,et al.  Efficient scheme for the shallow water equations on unstructured grids with application to the Continental Shelf , 2011 .

[30]  Jürgen Jensen,et al.  The impact of sea level rise on storm surge water levels in the northern part of the German Bight , 2015 .

[31]  S. Hanson,et al.  Ranking Port Cities with High Exposure and Vulnerability to Climate Extremes: Exposure Estimates , 2008 .

[32]  P. Woodworth A survey of recent changes in the main components of the ocean tide , 2010 .

[33]  J. Green Ocean tides and resonance , 2010 .

[34]  I. Haigh,et al.  Global secular changes in different tidal high water, low water and range levels , 2015 .

[35]  M. Müller Rapid change in semi‐diurnal tides in the North Atlantic since 1980 , 2011 .

[36]  Robert J. Nicholls,et al.  Sea‐level scenarios for evaluating coastal impacts , 2014 .

[37]  Aslak Grinsted,et al.  Upper limit for sea level projections by 2100 , 2014 .

[38]  B. Simon,et al.  Évolution de l'onde semi-diurne M2 de la marée à Brest de 1846 à 2005 , 2006 .

[39]  Malte Müller,et al.  Secular trends in ocean tides: Observations and model results , 2011 .

[40]  F. Stephenson Changing Sea Levels: Effects of Tides, Weather and Climate. David Pugh. Cambridge University Press. , 2004 .

[41]  O. Francis,et al.  Modelling the global ocean tides: modern insights from FES2004 , 2006 .

[42]  C. Garrett,et al.  On tidal resonance in the global ocean and the back‐effect of coastal tides upon open‐ocean tides , 2009 .

[43]  J. Vassie,et al.  APPLICATIONS OF THE JOINT PROBABILITY METHOD FOR EXTREME SEA LEVEL COMPUTATIONS. , 1980 .

[44]  Helen Amanda Fricker,et al.  Impact of tide‐topography interactions on basal melting of Larsen C Ice Shelf, Antarctica , 2012 .

[45]  P. Woodworth,et al.  Secular trends in mean tidal range around the British Isles and along the adjacent European coastline , 2007 .

[46]  Gary D. Egbert,et al.  Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum , 2004 .

[47]  Robert J. Nicholls,et al.  Assessing changes in extreme sea levels: Application to the English Channel, 1900-2006 , 2010 .

[48]  Andrew J. Plater,et al.  Book reviewSea-level change: Roger Revelle; Studies in Geophysics, National Research Council, National Academy Press, Washington, DC, 1990; xii + 246 pp.; USD 29.95, GBP 25.75; ISBN 0-309-04039 , 1992 .

[49]  M. Tamisiea,et al.  Recent mass balance of polar ice sheets inferred from patterns of global sea-level change , 2001, Nature.

[50]  Carling C. Hay,et al.  On the robustness of predictions of sea level fingerprints , 2011 .

[51]  A. Souza On the use of the Stokes number to explain frictional tidal dynamics and water column structure in shelf seas , 2013 .

[52]  R. Flick,et al.  Trends in United States Tidal Datum Statistics and Tide Range , 2003 .

[53]  R. Nicholls,et al.  Future flood losses in major coastal cities , 2013 .

[54]  G. Gudmundsson,et al.  Fortnightly variations in the flow velocity of Rutford Ice Stream, West Antarctica , 2006, Nature.

[55]  Kirk S. Hansen,et al.  Normal Modes of the World Ocean. Part II: Description of Modes in the Period Range 8 to 80 Hours , 1981 .

[56]  Aslak Grinsted,et al.  Sea level projections to AD2500 with a new generation of climate change scenarios , 2012 .

[57]  Anthony W. Purcell,et al.  Tidal evolution of the northwest European shelf seas from the Last Glacial Maximum to the present , 2006 .

[58]  Aslak Grinsted,et al.  Reconstructing sea level from paleo and projected temperatures 200 to 2100AD , 2009 .

[59]  Richard D. Ray,et al.  Secular changes of the M2 tide in the Gulf of Maine , 2006 .

[60]  H. A. Marmer Ocean Tides , 1921, Nature.

[61]  G. Egbert,et al.  Estimating Open-Ocean Barotropic Tidal Dissipation: The Hawaiian Ridge , 2006 .

[62]  J. Gregory,et al.  Changes in the occurrence of storm surges around the United Kingdom under a future climate scenario using a dynamic storm surge model driven by the Hadley Centre climate models , 2001 .

[63]  M. Grae Worster,et al.  Elastic dynamics and tidal migration of grounding lines modify subglacial lubrication and melting , 2013 .

[64]  D. Pugh Tides, Surges and Mean Sea-Level , 1987 .

[65]  Jürgen Jensen,et al.  Trends in high sea levels of German North Sea gauges compared to regional mean sea level changes , 2013 .

[66]  Katsuto Uehara,et al.  The impact of rapid coastline changes and sea level rise on the tides in the Bohai Sea, China , 2013 .

[67]  Bruce Smith,et al.  Climate Change, Mean Sea Level and High Tides in the Bay of Fundy , 2012 .

[68]  J. A. Mattias Green,et al.  Modelling tides and sea-level rise: To flood or not to flood , 2013 .

[69]  J. Lowe,et al.  Addressing ‘deep’ uncertainty over long-term climate in major infrastructure projects: four innovations of the Thames Estuary 2100 Project , 2013 .