Silicon Microwire Arrays for Solar Energy-Conversion Applications

Highly structured silicon microwire (Si MW) arrays have been synthesized and characterized as absorbers for solar energy-conversion systems. These materials are of great interest for applications in solar energy conversion, including solar electricity and solar fuels production, due to their unique materials properties, form factors, ease of fabrication, and device-processing attributes. The Si MW array geometry allows for efficient collection of photogenerated carriers from impure materials that have short minority-carrier diffusion lengths while simultaneously allowing for high optical absorption and high external quantum yields for charge-carrier collection. In addition, Si MW arrays exhibit unique mesoscale optical behavior and can be removed from the growth substrate to provide flexible, processable arrays of Si microwires ordered in a variety of organic polymers and ionomers. The unique photon-management properties of Si MW arrays, combined with their high internal surface area and controlled morpho...

[1]  Matthew R. Shaner,et al.  Photoelectrochemistry of core–shell tandem junction n–p^+-Si/n-WO_3 microwire array photoelectrodes , 2014 .

[2]  H. Atwater,et al.  Flexible, Transparent Contacts for Inorganic Nanostructures and Thin Films , 2013, Advanced materials.

[3]  Nathan S. Lewis,et al.  Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array photoanodes , 2013 .

[4]  Matthew R. Shaner,et al.  Electrical and Photoelectrochemical Properties of WO3/Si Tandem Photoelectrodes , 2013 .

[5]  F. Dimroth,et al.  InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit , 2013, Science.

[6]  N. Lewis,et al.  A Comparison of the Behavior of Single Crystalline and Nanowire Array ZnO Photoanodes , 2013 .

[7]  Nathan S. Lewis,et al.  Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems , 2012 .

[8]  N. Lewis,et al.  Magnetic field alignment of randomly oriented, high aspect ratio silicon microwires into vertically oriented arrays. , 2012, ACS nano.

[9]  James R. McKone,et al.  Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes , 2012 .

[10]  N. Lewis,et al.  Evaluation and optimization of mass transport of redox species in silicon microwire-array photoelectrodes , 2012, Proceedings of the National Academy of Sciences of the United States of America.

[11]  N. Lewis,et al.  In situ nanomechanical measurements of interfacial strength in membrane-embedded chemically functionalized Si microwires for flexible solar cells. , 2012, Nano letters.

[12]  N. Lewis,et al.  Photoelectrochemical characterization of Si microwire array solar cells , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[13]  M. Filler,et al.  Controlling silicon nanowire growth direction via surface chemistry. , 2012, Nano letters.

[14]  Elizabeth A. Santori,et al.  Photoanodic behavior of vapor-liquid-solid–grown, lightly doped, crystalline Si microwire arrays , 2012 .

[15]  N. Lewis,et al.  Wafer-Scale Growth of Silicon Microwire Arrays for Photovoltaics and Solar Fuel Generation , 2012, IEEE Journal of Photovoltaics.

[16]  Jennifer A. Dionne,et al.  Optimized light absorption in Si wire array solar cells , 2012 .

[17]  N. Lewis,et al.  A quantitative assessment of the competition between water and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes , 2012 .

[18]  J. Redwing,et al.  The effect of pattern density and wire diameter on the growth rate of micron diameter silicon wires , 2011 .

[19]  Nathan S. Lewis,et al.  Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes , 2011 .

[20]  Nathan S. Lewis,et al.  Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays , 2011 .

[21]  N. Lewis,et al.  Electrical Characterization of Si Microwires and of Si Microwire/Conducting Polymer Composite Junctions , 2011 .

[22]  Nathan S. Lewis,et al.  High-performance Si microwire photovoltaics , 2011 .

[23]  Emily D. Kosten,et al.  Ray optical light trapping in silicon microwires: exceeding the 2n(2) intensity limit. , 2011, Optics express.

[24]  N. Lewis,et al.  pH-Independent, 520 mV Open-Circuit Voltages of Si/Methyl Viologen 2+/+ Contacts Through Use of Radial n + p-Si Junction Microwire Array Photoelectrodes , 2011 .

[25]  Nathan S Lewis,et al.  Photoelectrochemical hydrogen evolution using Si microwire arrays. , 2011, Journal of the American Chemical Society.

[26]  H. Atwater,et al.  Conformal GaP layers on Si wire arrays for solar energy applications , 2010 .

[27]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[28]  T. Mayer,et al.  Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth , 2010 .

[29]  Joshua M. Spurgeon,et al.  Flexible, Polymer‐Supported, Si Wire Array Photoelectrodes , 2010, Advanced materials.

[30]  Nathan S. Lewis,et al.  Si microwire-array solar cells , 2010 .

[31]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[32]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[33]  U. Gösele,et al.  Growth, thermodynamics, and electrical properties of silicon nanowires. , 2010, Chemical reviews.

[34]  Nathan S. Lewis,et al.  Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes , 2010, Science.

[35]  N. Lewis,et al.  10 μm minority-carrier diffusion lengths in Si wires synthesized by Cu-catalyzed vapor-liquid-solid growth , 2009 .

[36]  Volker Schmidt,et al.  Silicon Nanowires: A Review on Aspects of their Growth and their Electrical Properties , 2009, Advanced materials.

[37]  H. A. Atwater,et al.  Predicted efficiency of Si wire array solar cells , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[38]  Nathan S. Lewis,et al.  Flexible Polymer‐Embedded Si Wire Arrays , 2009 .

[39]  Nathan S Lewis,et al.  Secondary ion mass spectrometry of vapor-liquid-solid grown, Au-catalyzed, Si wires. , 2008, Nano letters.

[40]  Nathan S. Lewis,et al.  Repeated epitaxial growth and transfer of arrays of patterned, vertically aligned, crystalline Si wires from a single Si(111) substrate , 2008 .

[41]  N. Lewis,et al.  Macroporous Silicon as a Model for Silicon Wire Array Solar Cells , 2008 .

[42]  Joshua M. Spurgeon,et al.  A Comparison Between the Behavior of Nanorod Array and Planar Cd(Se, Te) Photoelectrodes , 2008 .

[43]  Peng Wang,et al.  High-resolution detection of Au catalyst atoms in Si nanowires. , 2008, Nature nanotechnology.

[44]  Nathan S Lewis,et al.  Photovoltaic measurements in single-nanowire silicon solar cells. , 2008, Nano letters.

[45]  Gang Chen,et al.  Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. , 2007, Nano letters.

[46]  Nathan S Lewis,et al.  High aspect ratio silicon wire array photoelectrochemical cells. , 2007, Journal of the American Chemical Society.

[47]  Nathan S. Lewis,et al.  Growth of vertically aligned Si wire arrays over large areas (>1 cm^2) with Au and Cu catalysts , 2007 .

[48]  S. Senz,et al.  Epitaxial growth of silicon nanowires using an aluminium catalyst , 2006, Nature nanotechnology.

[49]  Thomas W. Hamann,et al.  Control of the stability, electron-transfer kinetics, and pH-dependent energetics of Si/H2O interfaces through methyl termination of Si(111) surfaces. , 2006, The journal of physical chemistry. B.

[50]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[51]  L. Lauhon,et al.  Three-dimensional nanoscale composition mapping of semiconductor nanowires. , 2006, Nano letters.

[52]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[53]  Peidong Yang,et al.  Controlled growth of Si nanowire arrays for device integration. , 2005, Nano letters.

[54]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[55]  Y. Nakato,et al.  An Approach to Ideal Semiconductor Electrodes for Efficient Photoelectrochemical Reduction of Carbon Dioxide by Modification with Small Metal Particles , 1998 .

[56]  J. Kelly,et al.  Electrochemistry of porous and crystalline silicon electrodes in methylviologen solutions , 1996 .

[57]  M. Green,et al.  Novel parallel multijunction solar cell , 1994 .

[58]  Ajeet Rohatgi,et al.  Impurity effects in silicon for high efficiency solar cells , 1986 .

[59]  N. Lewis,et al.  A 14% efficient nonaqueous semiconductor/liquid junction solar cell , 1984 .

[60]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[61]  R. G. Treuting,et al.  Orientation habits of metal whiskers , 1957 .

[62]  J. Struthers Solubility and Diffusivity of Gold, Iron, and Copper in Silicon , 1956 .

[63]  James R. McKone Earth-Abundant Materials for Solar Hydrogen Generation , 2013 .

[64]  Eicke R. Weber,et al.  Physics of Copper in Silicon , 2002 .

[65]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[66]  N. Lewis,et al.  Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes , 1982 .

[67]  E. L. Johnson The TI solar energy system development , 1981, International Electron Devices Meeting.

[68]  F. Trumbore,et al.  Solid solubilities of impurity elements in germanium and silicon , 1960 .