Cluster Forests

[1]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[2]  P. Bickel,et al.  A nonparametric view of network models and Newman–Girvan and other modularities , 2009, Proceedings of the National Academy of Sciences.

[3]  Xiaoli Z. Fern,et al.  Adaptive Cluster Ensemble Selection , 2009, IJCAI.

[4]  Ling Huang,et al.  Fast approximate spectral clustering , 2009, KDD.

[5]  Ling Huang,et al.  Spectral Clustering with Perturbed Data , 2008, NIPS.

[6]  Multiway Spectral Clustering: A Margin-based Perspective , 2008, 1102.3768.

[7]  Xiaoli Z. Fern,et al.  Cluster Ensemble Selection , 2008, Stat. Anal. Data Min..

[8]  Mikhail Belkin,et al.  Consistency of spectral clustering , 2008, 0804.0678.

[9]  Edoardo M. Airoldi,et al.  Mixed Membership Stochastic Blockmodels , 2007, NIPS.

[10]  Chinmay Hegde,et al.  Random Projections for Manifold Learning , 2007, NIPS.

[11]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[12]  S. Horvath,et al.  Unsupervised Learning With Random Forest Predictors , 2006 .

[13]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[14]  Dimitris Achlioptas,et al.  On Spectral Learning of Mixtures of Distributions , 2005, COLT.

[15]  B. Nadler,et al.  Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck Operators , 2005, NIPS.

[16]  Ana L. N. Fred,et al.  Combining multiple clusterings using evidence accumulation , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Liang Xu,et al.  Regularized spectral learning , 2005, AISTATS.

[18]  Rich Caruana,et al.  Ensemble selection from libraries of models , 2004, ICML.

[19]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[20]  Santosh S. Vempala,et al.  A spectral algorithm for learning mixture models , 2004, J. Comput. Syst. Sci..

[21]  William F. Punch,et al.  Ensembles of partitions via data resampling , 2004, International Conference on Information Technology: Coding and Computing, 2004. Proceedings. ITCC 2004..

[22]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[23]  Anil K. Jain,et al.  Combining multiple weak clusterings , 2003, Third IEEE International Conference on Data Mining.

[24]  Carla E. Brodley,et al.  Random Projection for High Dimensional Data Clustering: A Cluster Ensemble Approach , 2003, ICML.

[25]  Sandrine Dudoit,et al.  Bagging to Improve the Accuracy of A Clustering Procedure , 2003, Bioinform..

[26]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[27]  Ana L. N. Fred,et al.  Data clustering using evidence accumulation , 2002, Object recognition supported by user interaction for service robots.

[28]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockstructures , 2001 .

[29]  Anna R. Karlin,et al.  Spectral analysis of data , 2001, STOC '01.

[30]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[31]  Santosh S. Vempala,et al.  On clusterings-good, bad and spectral , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[32]  Sanjoy Dasgupta,et al.  Experiments with Random Projection , 2000, UAI.

[33]  Jianbo Shi,et al.  Learning Segmentation by Random Walks , 2000, NIPS.

[34]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[35]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[36]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[37]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[38]  D. Pollard Strong Consistency of $K$-Means Clustering , 1981 .

[39]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[40]  Tosio Kato Perturbation theory for linear operators , 1966 .