Fusion of Local and Regional Approaches for On-Line Signature Verification

Function-based methods for on-line signature verification are studied. These methods are classified into local and regional depending on the features used for matching. One representative method of each class is selected from the literature. The selected local and regional methods are based on Dynamic Time Warping and Hidden Markov Models, respectively. Some improvements are presented for the local method aimed at strengthening the performance against skilled forgeries. The two methods are compared following the protocol defined in the Signature Verification Competition 2004. Fusion results are also provided demonstrating the complementary nature of these two approaches.

[1]  Anton Cervin,et al.  Multirate Feedback Control Using the TinyRealTime Kernel , 2004 .

[2]  Anil K. Jain,et al.  On-line signature verification, , 2002, Pattern Recognit..

[3]  Loris Nanni,et al.  An On-Line Signature Verification System Based on Fusion of Local and Global Information , 2005, AVBPA.

[4]  Alvin F. Martin,et al.  The DET curve in assessment of detection task performance , 1997, EUROSPEECH.

[5]  Hong Chang,et al.  SVC2004: First International Signature Verification Competition , 2004, ICBA.

[6]  Josef Kittler,et al.  Audio- and Video-Based Biometric Person Authentication, 5th International Conference, AVBPA 2005, Hilton Rye Town, NY, USA, July 20-22, 2005, Proceedings , 2005, AVBPA.

[7]  Julian Fiérrez,et al.  Speaker Verification Using Adapted User-Dependent Multilevel Fusion , 2005, Multiple Classifier Systems.

[8]  Arun Ross,et al.  An introduction to biometric recognition , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[9]  Julian Fiérrez,et al.  Target dependent score normalization techniques and their application to signature verification , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[10]  Arun Ross,et al.  Score normalization in multimodal biometric systems , 2005, Pattern Recognit..

[11]  Ying Zhang,et al.  Recognition of Symmetrical Images Using Affine Moment Invariants in both Frequency and Spatial Domains , 2002, Pattern Analysis & Applications.

[12]  Anil K. Jain,et al.  Handbook of Fingerprint Recognition , 2005, Springer Professional Computing.

[13]  Sargur N. Srihari,et al.  On-Line and Off-Line Handwriting Recognition: A Comprehensive Survey , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Hichem Sahli,et al.  A Multi-stage Online Signature Verification System , 2002, Pattern Analysis & Applications.

[15]  Stephen Krawczyk,et al.  USER AUTHENTICATION USING ON-LINE SIGNATURE AND SPEECH , 2005 .

[16]  Juan J. Igarza,et al.  MCYT baseline corpus: a bimodal biometric database , 2003 .

[17]  Toby Berger,et al.  Reliable On-Line Human Signature Verification Systems , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Berrin A. Yanikoglu,et al.  Biometric Authentication Using Online Signatures , 2004, ISCIS.

[19]  Alfred C. Weaver,et al.  Biometric authentication , 2006, Computer.

[20]  Arun Ross,et al.  Multibiometric systems , 2004, CACM.

[21]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  W. Turin,et al.  On-line handwritten signature verification using hidden Markov model features , 1997, Proceedings of the Fourth International Conference on Document Analysis and Recognition.

[23]  L. Yang,et al.  Application of hidden Markov models for signature verification , 1995, Pattern Recognit..

[24]  V. S. Nalwa Automatic on-line signature verification , 1997 .

[25]  Réjean Plamondon,et al.  Automatic signature verification and writer identification - the state of the art , 1989, Pattern Recognit..

[26]  Stefan Fischer,et al.  Expert Conciliation for Multi Modal Person Authentication Systems by Bayesian Statistics , 1997, AVBPA.