Review of data processing of functional optical microscopy for neuroscience

Functional optical imaging in neuroscience is rapidly growing with the development of new optical systems and fluorescence indicators. To realize the potential of these massive spatiotemporal datasets for relating neuronal activity to behavior and stimuli and uncovering local circuits in the brain, accurate automated processing is increasingly essential. In this review, we cover recent computational developments in the full data processing pipeline of functional optical microscopy for neuroscience data and discuss ongoing and emerging challenges.

[1]  D. Labate,et al.  Improved detection of soma location and morphology in fluorescence microscopy images of neurons , 2016, Journal of Neuroscience Methods.

[2]  Ying Ma,et al.  Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[3]  Liam Paninski,et al.  Fast online deconvolution of calcium imaging data , 2016, PLoS Comput. Biol..

[4]  Adam S. Charles,et al.  Stochastic filtering of two-photon imaging using reweighted ℓ1 , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[5]  Adam S. Charles,et al.  Dethroning the Fano Factor: a flexible, model-based approach to partitioning neural variability , 2017, bioRxiv.

[6]  Hakan Inan,et al.  Robust Estimation of Neural Signals in Calcium Imaging , 2017, NIPS.

[7]  P. De Koninck,et al.  Adaptive Movement Compensation for In Vivo Imaging of Fast Cellular Dynamics within a Moving Tissue , 2011, PloS one.

[8]  T. Wilson,et al.  Scanning two photon fluorescence microscopy with extended depth of field , 2006 .

[9]  Mark T. Harnett,et al.  Nonlinear dendritic integration of sensory and motor input during an active sensing task , 2012, Nature.

[10]  Rafael Yuste,et al.  moco: Fast Motion Correction for Calcium Imaging , 2015, Front. Neuroinform..

[11]  Adam S. Charles,et al.  Volumetric Two-photon Imaging of Neurons Using Stereoscopy (vTwINS) , 2016, Nature Methods.

[12]  Srinivas C. Turaga,et al.  Programmable 3D snapshot microscopy with Fourier convolutional networks , 2021, ArXiv.

[13]  Kenneth D Harris,et al.  Robustness of Spike Deconvolution for Neuronal Calcium Imaging , 2018, The Journal of Neuroscience.

[14]  Noah Simon,et al.  SCALPEL: EXTRACTING NEURONS FROM CALCIUM IMAGING DATA. , 2017, The annals of applied statistics.

[15]  Adam M. Packer,et al.  Extracting regions of interest from biological images with convolutional sparse block coding , 2013, NIPS.

[16]  Marius Pachitariu,et al.  Computational processing of neural recordings from calcium imaging data , 2019, Current Opinion in Neurobiology.

[17]  Hakan Inan,et al.  Fast, in vivo voltage imaging using a red fluorescent indicator , 2018, Nature Methods.

[18]  Rosa Cossart,et al.  DeepCINAC: A Deep-Learning-Based Python Toolbox for Inferring Calcium Imaging Neuronal Activity Based on Movie Visualization , 2020, eNeuro.

[19]  Arno Onken,et al.  CalciumGAN: A Generative Adversarial Network Model for Synthesising Realistic Calcium Imaging Data of Neuronal Populations , 2020, ArXiv.

[20]  Zhongping Chen,et al.  GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking. , 2006, Optics express.

[21]  Michel A. Picardo,et al.  DeepCINAC: A Deep-Learning-Based Python Toolbox for Inferring Calcium Imaging Neuronal Activity Based on Movie Visualization , 2019, bioRxiv.

[22]  Liam Paninski,et al.  Fast Active Set Methods for Online Deconvolution of Calcium Imaging Data , 2016, 1609.00639.

[23]  Johannes D. Seelig,et al.  Video-rate volumetric functional imaging of the brain at synaptic resolution , 2016, Nature Neuroscience.

[24]  Keith J. Kelleher,et al.  Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity , 2008, Nature Neuroscience.

[25]  Andrew C. N. Chen,et al.  Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons , 2017, eLife.

[26]  A. Nimmerjahn,et al.  Imaging large-scale cellular activity in spinal cord of freely behaving mice , 2016, Nature Communications.

[27]  Diana A. Liao,et al.  Social-vocal brain networks in a non-human primate , 2021, bioRxiv.

[28]  Christof Koch,et al.  Relationship between simultaneously recorded spiking activity and fluorescence signal in GCaMP6 transgenic mice , 2019, eLife.

[29]  Qionghai Dai,et al.  Reinforcing neuron extraction and spike inference in calcium imaging using deep self-supervised denoising , 2021, Nature Methods.

[30]  Thomas Knöpfel,et al.  Optical voltage imaging in neurons: moving from technology development to practical tool , 2019, Nature Reviews Neuroscience.

[31]  Eftychios A Pnevmatikakis,et al.  Analysis pipelines for calcium imaging data , 2019, Current Opinion in Neurobiology.

[32]  L. Paninski,et al.  Simultaneous Multi-plane Imaging of Neural Circuits , 2016, Neuron.

[33]  A. Grinvald Real-time optical mapping of neuronal activity: from single growth cones to the intact mammalian brain. , 1985, Annual review of neuroscience.

[34]  G. Montaldo,et al.  Real-time imaging of brain activity in freely moving rats using functional ultrasound , 2015, Nature Methods.

[35]  Jessica A. Cardin,et al.  Mesoscopic Imaging: Shining a Wide Light on Large-Scale Neural Dynamics , 2020, Neuron.

[36]  P. Ellinger FLUORESCENCE MICROSCOPY IN BIOLOGY , 1940 .

[37]  Sina Farsiu,et al.  Segmentation of neurons from fluorescence calcium recordings beyond real time , 2021, Nature Machine Intelligence.

[38]  Matthew T. Kaufman,et al.  Single-trial neural dynamics are dominated by richly varied movements , 2019, Nature Neuroscience.

[39]  Camden J. MacDowell,et al.  Low-Dimensional Spatiotemporal Dynamics Underlie Cortex-wide Neural Activity , 2020, Current Biology.

[40]  Nicholas A. Steinmetz,et al.  Drift correction for electrophysiology and two-photon calcium imaging , 2018 .

[41]  J. Freer,et al.  New Calcium Indicators and Buffers with High Selectivity against Magnesium and Protons : Design , Synthesis , and Properties of Prototype Structures ? , 2001 .

[42]  Toru Aonishi,et al.  Detecting cells using non-negative matrix factorization on calcium imaging data , 2014, Neural Networks.

[43]  A. Gamal,et al.  Miniaturized integration of a fluorescence microscope , 2011, Nature Methods.

[44]  Paul Fearnhead,et al.  Fast nonconvex deconvolution of calcium imaging data. , 2018, Biostatistics.

[45]  I. Davison,et al.  Simultaneous multiplane imaging with reverberation multiphoton microscopy. , 2018, 1812.05162.

[46]  Matthias Bethge,et al.  Benchmarking Spike Rate Inference in Population Calcium Imaging , 2016, Neuron.

[47]  Alon Rubin,et al.  Tracking the Same Neurons across Multiple Days in Ca2+ Imaging Data , 2017, Cell reports.

[48]  Lina M. Tran,et al.  A compact head-mounted endoscope for in vivo calcium imaging in freely-behaving mice , 2018, bioRxiv.

[49]  Fumiyasu Komaki,et al.  Deconvolution of calcium imaging data using marked point processes , 2020, PLoS Comput. Biol..

[50]  Fritjof Helmchen,et al.  Online correction of licking‐induced brain motion during two‐photon imaging with a tunable lens , 2013, The Journal of physiology.

[51]  Adam S. Charles,et al.  Learning Spatially-correlated Temporal Dictionaries for Calcium Imaging , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[52]  Ronald R. Coifman,et al.  Hierarchical Coupled-Geometry Analysis for Neuronal Structure and Activity Pattern Discovery , 2015, IEEE Journal of Selected Topics in Signal Processing.

[53]  High resolution imaging in awake behaving mice: Motion correction and virtual reality , 2010 .

[54]  D. Tank,et al.  Imaging Cortical Dynamics in GCaMP Transgenic Rats with a Head-Mounted Widefield Macroscope , 2018, Neuron.

[55]  Adam S. Charles,et al.  GraFT: Graph Filtered Temporal Dictionary Learning for Functional Neural Imaging , 2021, bioRxiv.

[56]  D. McVea,et al.  Mirrored Bilateral Slow-Wave Cortical Activity within Local Circuits Revealed by Fast Bihemispheric Voltage-Sensitive Dye Imaging in Anesthetized and Awake Mice , 2010, The Journal of Neuroscience.

[57]  John P. Cunningham,et al.  Neuroscience Cloud Analysis As a Service , 2020, bioRxiv.

[58]  Jessica A. Cardin,et al.  Dual color mesoscopic imaging reveals spatiotemporally heterogeneous coordination of cholinergic and neocortical activity , 2020, bioRxiv.

[59]  LM Tran,et al.  Automated Curation of CNMF-E-Extracted ROI Spatial Footprints and Calcium Traces Using Open-Source AutoML Tools , 2020, bioRxiv.

[60]  Bryan J MacLennan,et al.  Functional clustering of dendritic activity during decision-making , 2018, bioRxiv.

[61]  Fritjof Helmchen,et al.  Calibration of fluorescent calcium indicators. , 2011, Cold Spring Harbor protocols.

[62]  T. Komiyama,et al.  Multimodal neural recordings with Neuro-FITM uncover diverse patterns of cortical–hippocampal interactions , 2021, Nature Neuroscience.

[63]  Germán Sumbre,et al.  An integrated calcium imaging processing toolbox for the analysis of neuronal population dynamics , 2017, PLoS Comput. Biol..

[64]  Nathalie McCarthy,et al.  Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging , 2014, Front. Cell. Neurosci..

[65]  Funing Li,et al.  Imaging volumetric dynamics at high speed in mouse and zebrafish brain with confocal light field microscopy , 2020, Nature Biotechnology.

[66]  A. Vaziri,et al.  Volumetric Calcium Imaging of 1 Million Neurons Across Cortical Regions at Cellular Resolution using Light Beads Microscopy , 2021 .

[67]  Liam Paninski,et al.  OnACID: Online Analysis of Calcium Imaging Data in Real Time , 2017, bioRxiv.

[68]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[69]  Jakob Voigts,et al.  Somatic and Dendritic Encoding of Spatial Variables in Retrosplenial Cortex Differs during 2D Navigation , 2019, Neuron.

[70]  Nicholas A. Steinmetz,et al.  Striatal activity topographically reflects cortical activity , 2021, Nature.

[71]  Kevin K. Sit,et al.  Distributed and retinotopically asymmetric processing of coherent motion in mouse visual cortex , 2019, Nature Communications.

[72]  Matthias Bethge,et al.  Standardizing and benchmarking data analysis for calcium imaging , 2017 .

[73]  Carlos Portera-Cailliau,et al.  EZcalcium: Open-Source Toolbox for Analysis of Calcium Imaging Data , 2020, bioRxiv.

[74]  Jakob Voigts,et al.  An animal-actuated rotational head-fixation system for 2-photon imaging during 2-d navigation , 2018, bioRxiv.

[75]  Pengcheng Zhou,et al.  CaImAn an open source tool for scalable calcium imaging data analysis , 2019, eLife.

[76]  Satrajit S. Ghosh,et al.  Toward Community-Driven Big Open Brain Science: Open Big Data and Tools for Structure, Function, and Genetics. , 2020, Annual review of neuroscience.

[77]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[78]  Fritjof Helmchen,et al.  A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging , 2020, Nature Neuroscience.

[79]  J. J. Macklin,et al.  High-performance GFP-based calcium indicators for imaging activity in neuronal populations and microcompartments , 2018, bioRxiv.

[80]  Lena Constantin,et al.  Calcium imaging and the curse of negativity , 2020 .

[81]  Fred A. Hamprecht,et al.  DISCo: Deep Learning, Instance Segmentation, and Correlations for Cell Segmentation in Calcium Imaging , 2020, MICCAI.

[82]  Byron M. Yu,et al.  Dimensionality reduction for large-scale neural recordings , 2014, Nature Neuroscience.

[83]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[84]  Michał Grochowski,et al.  Data augmentation for improving deep learning in image classification problem , 2018, 2018 International Interdisciplinary PhD Workshop (IIPhDW).

[85]  R. Campbell,et al.  Genetically encoded fluorescent indicators for imaging intracellular potassium ion concentration , 2019, Communications Biology.

[86]  Bernardo L Sabatini,et al.  Ca2+ signaling in dendritic spines , 2007, Current Opinion in Neurobiology.

[87]  T. Komiyama,et al.  PatchWarp: Corrections of non-uniform image distortions in two-photon calcium imaging data by patchwork affine transformations , 2021, bioRxiv.

[88]  Marius Pachitariu,et al.  Robustness of spike deconvolution for calcium imaging of neural spiking , 2017 .

[89]  Wulfram Gerstner,et al.  Inference of neuronal network spike dynamics and topology from calcium imaging data , 2013, Front. Neural Circuits.

[90]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[91]  Eero P. Simoncelli,et al.  Direct Estimation of Firing Rates from Calcium Imaging Data , 2016, 1601.00364.

[92]  Manuel Guizar-Sicairos,et al.  Efficient subpixel image registration algorithms. , 2008, Optics letters.

[93]  A. Mehta,et al.  In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. , 2004, Journal of neurophysiology.

[94]  Quico Spaen,et al.  HNCcorr: A Novel Combinatorial Approach for Cell Identification in Calcium-Imaging Movies , 2017, eNeuro.

[95]  Jeremy F. Magland,et al.  SpikeForest: reproducible web-facing ground-truth validation of automated neural spike sorters , 2020, bioRxiv.

[96]  S. Fraser,et al.  Using enhanced number and brightness to measure protein oligomerization dynamics in live cells , 2019, Nature Protocols.

[97]  Samuel S-H Wang,et al.  Fast calcium sensor proteins for monitoring neural activity , 2014, Neurophotonics.

[98]  Yan Zhang,et al.  Miniscope GRIN Lens System for Calcium Imaging of Neuronal Activity from Deep Brain Structures in Behaving Animals , 2018, Current protocols in neuroscience.

[99]  A. Vaziri,et al.  High-speed volumetric imaging of neuronal activity in freely moving rodents , 2018, Nature Methods.

[100]  Liam Paninski,et al.  Localized semi-nonnegative matrix factorization (LocaNMF) of widefield calcium imaging data , 2020, PLoS computational biology.

[101]  Rafael Yuste,et al.  Fast nonnegative deconvolution for spike train inference from population calcium imaging. , 2009, Journal of neurophysiology.

[102]  Wing-Ho Yung,et al.  Fully Affine Invariant Methods for Cross-Session Registration of Calcium Imaging Data , 2020, eNeuro.

[103]  Violeta G. Lopez-Huerta,et al.  Population imaging of neural activity in awake behaving mice , 2019, Nature.

[104]  Liam Paninski,et al.  High fidelity estimates of spikes and subthreshold waveforms from 1-photon voltage imaging in vivo , 2020, bioRxiv.

[105]  Martin Vetterli,et al.  Adaptive wavelet thresholding for image denoising and compression , 2000, IEEE Trans. Image Process..

[106]  Pier Luigi Dragotti,et al.  ABLE: An Activity-Based Level Set Segmentation Algorithm for Two-Photon Calcium Imaging Data , 2017, eNeuro.

[107]  Karel Svoboda,et al.  Kilohertz frame-rate two-photon tomography , 2018, bioRxiv.

[108]  Farhan Ali,et al.  Interpreting in vivo calcium signals from neuronal cell bodies, axons, and dendrites: a review , 2019, Neurophotonics.

[109]  Balázs Rózsa,et al.  Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes , 2012, Nature Methods.

[110]  Matthew R Whiteway,et al.  Parallel Processing of Sound Dynamics across Mouse Auditory Cortex via Spatially Patterned Thalamic Inputs and Distinct Areal Intracortical Circuits. , 2019, Cell reports.

[111]  K. B. Clancy,et al.  Locomotion-dependent remapping of distributed cortical networks , 2018, Nature Neuroscience.

[112]  Loic A. Royer,et al.  Content-aware image restoration: pushing the limits of fluorescence microscopy , 2018, Nature Methods.

[113]  Xilin Shen,et al.  Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits , 2018, Nature Methods.

[114]  David Pfau,et al.  Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data , 2016, Neuron.

[115]  Fred A. Hamprecht,et al.  Sparse Space-Time Deconvolution for Calcium Image Analysis , 2014, NIPS.

[116]  Michael Elad,et al.  On the Role of Sparse and Redundant Representations in Image Processing , 2010, Proceedings of the IEEE.

[117]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[118]  Bernd Freisleben,et al.  Detection and segmentation of morphologically complex eukaryotic cells in fluorescence microscopy images via feature pyramid fusion , 2020, PLoS Comput. Biol..

[119]  A. Vaziri,et al.  High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy , 2021, Nature Methods.

[120]  Fritjof Helmchen,et al.  A single-compartment model of calcium dynamics in nerve terminals and dendrites. , 2015, Cold Spring Harbor protocols.

[121]  David C. Jangraw,et al.  Ultra-high resolution blood volume fMRI and BOLD fMRI in humans at 9.4 T: Capabilities and challenges , 2018, NeuroImage.

[122]  Christof Koch,et al.  Removing independent noise in systems neuroscience data using DeepInterpolation , 2020, bioRxiv.

[123]  Kenneth D. Harris,et al.  Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings , 2020, Science.

[124]  Liam Paninski,et al.  Sparse nonnegative deconvolution for compressive calcium imaging: algorithms and phase transitions , 2013, NIPS.

[125]  F. Helmchen,et al.  Imaging cellular network dynamics in three dimensions using fast 3D laser scanning , 2007, Nature Methods.

[126]  Na Ji,et al.  Characterization and improvement of three-dimensional imaging performance of GRIN-lens-based two-photon fluorescence endomicroscopes with adaptive optics. , 2013, Optics express.

[127]  Benjamin F. Grewe,et al.  Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens , 2011, Biomedical optics express.

[128]  Hongkui Zeng,et al.  Kilohertz two-photon brain imaging in awake mice , 2019, Nature Methods.

[129]  Jun Nishiyama,et al.  Imaging dendritic spines: molecular organization and signaling for plasticity , 2020, Current Opinion in Neurobiology.

[130]  Wolfgang Losert,et al.  Particle Tracking Facilitates Real Time Capable Motion Correction in 2D or 3D Two-Photon Imaging of Neuronal Activity , 2017, Front. Neural Circuits.

[131]  Jeremias Sulam,et al.  Automated in vivo Tracking of Cortical Oligodendrocytes , 2021, bioRxiv.

[132]  Sina Farsiu,et al.  Fast and robust active neuron segmentation in two-photon calcium imaging using spatiotemporal deep learning , 2019, Proceedings of the National Academy of Sciences.

[133]  Takaki Komiyama,et al.  Real-Time Processing of Two-Photon Calcium Imaging Data Including Lateral Motion Artifact Correction , 2018, Front. Neuroinform..

[134]  Michael Z. Lin,et al.  A Suite of Transgenic Driver and Reporter Mouse Lines with Enhanced Brain-Cell-Type Targeting and Functionality , 2018, Cell.

[135]  Matthew Eicholtz,et al.  Fast, Simple Calcium Imaging Segmentation with Fully Convolutional Networks , 2017, DLMIA/ML-CDS@MICCAI.

[136]  Michael B. Reiser,et al.  Corrigendum: Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior , 2011, Nature Methods.

[137]  Rapid fluctuations in functional connectivity of cortical networks encode spontaneous behavior , 2021 .

[138]  R. Meir,et al.  Cell-type specific outcome representation in primary motor cortex , 2020, bioRxiv.

[139]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[140]  Adam S. Charles,et al.  Neural anatomy and optical microscopy (NAOMi) simulation for evaluating calcium imaging methods , 2019, Journal of Neuroscience Methods.

[141]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[142]  Rafael Yuste,et al.  Multi-scale approaches for high-speed imaging and analysis of large neural populations , 2016, bioRxiv.

[143]  H. Sebastian Seung,et al.  Automatic Neuron Detection in Calcium Imaging Data Using Convolutional Networks , 2016, NIPS.

[144]  R. Mann,et al.  Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms , 2014, Nature Photonics.

[145]  T. Komiyama,et al.  Characterizing Cortex-Wide Dynamics with Wide-Field Calcium Imaging , 2021, The Journal of Neuroscience.

[146]  Ronald R. Coifman,et al.  Automated cellular structure extraction in biological images with applications to calcium imaging data , 2018, bioRxiv.

[147]  Mario Dipoppa,et al.  Suite2p: beyond 10,000 neurons with standard two-photon microscopy , 2016, bioRxiv.

[148]  J. Vogelstein,et al.  Visualizing synaptic plasticity in vivo by large-scale imaging of endogenous AMPA receptors , 2020, bioRxiv.

[149]  Karel Svoboda,et al.  Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging , 2006, Nature Neuroscience.

[150]  Xenophon Papademetris,et al.  Simultaneous cortex-wide fluorescence Ca2+ imaging and whole-brain fMRI , 2020, Nature Methods.

[151]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[152]  P. Pizzo,et al.  Calcium Imaging in Drosophila melanogaster. , 2020, Advances in experimental medicine and biology.

[153]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[154]  E. Pnevmatikakis,et al.  NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data , 2017, Journal of Neuroscience Methods.

[155]  Bradley J. Baker,et al.  Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[156]  Hilmar Bading,et al.  Nuclear calcium sensors reveal that repetition of trains of synaptic stimuli boosts nuclear calcium signaling in CA1 pyramidal neurons. , 2010, Biophysical journal.

[157]  Liam Paninski,et al.  Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data , 2016, eLife.

[158]  Jean-Christophe Olivo-Marin,et al.  A Robust and Versatile Framework to Compare Spike Detection Methods in Calcium Imaging of Neuronal Activity , 2021, 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI).

[159]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[160]  J. Bhattacharya,et al.  Ultra‐high‐field fMRI insights on insight: Neural correlates of the Aha!‐moment , 2018, Human brain mapping.

[161]  Sergey L. Gratiy,et al.  Fully integrated silicon probes for high-density recording of neural activity , 2017, Nature.

[162]  Spencer L. Smith,et al.  Parallel processing of visual space by neighboring neurons in mouse visual cortex , 2010, Nature Neuroscience.

[163]  Philipp J. Keller,et al.  Light-sheet functional imaging in fictively behaving zebrafish , 2014, Nature Methods.

[164]  Jinyoung Jang,et al.  Population imaging discrepancies between a genetically-encoded calcium indicator (GECI) versus a genetically-encoded voltage indicator (GEVI) , 2021, Scientific Reports.

[165]  Dustin Scheinost,et al.  Spanning spatiotemporal scales with simultaneous mesoscopic Ca2+ imaging and functional MRI , 2018, bioRxiv.

[166]  Andreas S Tolias,et al.  In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain , 2017, Nature Methods.

[167]  Jakob H. Macke,et al.  Fast amortized inference of neural activity from calcium imaging data with variational autoencoders , 2017, NIPS.

[168]  J. Polimeni,et al.  High-resolution fMRI at 7Tesla: challenges, promises and recent developments for individual-focused fMRI studies , 2021, Current Opinion in Behavioral Sciences.

[169]  C. Stosiek,et al.  In vivo two-photon calcium imaging of neuronal networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[170]  Na Ji Video-rate Volumetric Functional Imaging of the Brain at Synaptic Resolution , 2017 .

[171]  J. Waters,et al.  Separation of hemodynamic signals from GCaMP fluorescence measured with widefield imaging , 2019, bioRxiv.

[172]  Xiuyuan Cheng,et al.  Spectral Embedding Norm: Looking Deep into the Spectrum of the Graph Laplacian , 2018, SIAM J. Imaging Sci..

[173]  Karel Svoboda,et al.  A comparison of neuronal population dynamics measured with calcium imaging and electrophysiology , 2019, bioRxiv.

[174]  Stefan Roth,et al.  In vivo widefield calcium imaging of the mouse cortex for analysis of network connectivity in health and brain disease , 2018 .

[175]  Sander W. Keemink,et al.  FISSA: A neuropil decontamination toolbox for calcium imaging signals , 2018, Scientific Reports.

[176]  Alcino J. Silva,et al.  A shared neural ensemble links distinct contextual memories encoded close in time , 2016, Nature.

[177]  Jeffry S. Isaacson,et al.  Flexible Sensory Representations in Auditory Cortex Driven by Behavioral Relevance , 2015, Neuron.

[178]  Na Ji,et al.  In vivo measurement of afferent activity with axon-specific calcium imaging , 2018, Nature Neuroscience.

[179]  Evaluating brain parcellations using the distance controlled boundary coefficient , 2021, bioRxiv.

[180]  K. Svoboda,et al.  A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging , 2016, bioRxiv.

[181]  René Vidal,et al.  Structured Low-Rank Matrix Factorization: Global Optimality, Algorithms, and Applications , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[182]  Jinling Lu,et al.  Density center-based fast clustering of widefield fluorescence imaging of cortical mesoscale functional connectivity and relation to structural connectivity , 2019, Neurophotonics.

[183]  Rafael Yuste,et al.  Imaging calcium dynamics in dendritic spines , 1996, Current Opinion in Neurobiology.

[184]  Chen Yan,et al.  A compact head-mounted endoscope for in vivo calcium imaging in freely-behaving mice , 2018, bioRxiv.

[185]  Christina K. Kim,et al.  Prolonged, brain-wide expression of nuclear-localized GCaMP3 for functional circuit mapping , 2014, Front. Neural Circuits.

[186]  Yajie Liang,et al.  Three-photon fluorescence microscopy with an axially elongated Bessel focus , 2018, bioRxiv.

[187]  Eftychios A. Pnevmatikakis,et al.  VolPy: automated and scalable analysis pipelines for voltage imaging datasets , 2020, bioRxiv.

[188]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[189]  Ying Ma,et al.  Penalized matrix decomposition for denoising, compression, and improved demixing of functional imaging data , 2018, bioRxiv.

[190]  Mark D. Humphries,et al.  On the use of calcium deconvolution algorithms in practical contexts , 2019, bioRxiv.

[191]  Albert J. P. Theuwissen,et al.  Computational imaging , 2012, 2012 IEEE International Solid-State Circuits Conference.

[192]  R. S. Williamson,et al.  Cellular and widefield imaging of sound frequency organization in primary and higher-order fields of the mouse auditory cortex , 2019, bioRxiv.

[193]  M. Fink,et al.  Functional ultrasound imaging of the brain: theory and basic principles , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[194]  Lindsey L. Glickfeld,et al.  Mouse Primary Visual Cortex Is Used to Detect Both Orientation and Contrast Changes , 2013, The Journal of Neuroscience.

[195]  T. Ebner,et al.  Use of voltage-sensitive dyes and optical recordings in the central nervous system , 1995, Progress in Neurobiology.

[196]  Brenda C. Shields,et al.  Thy1-GCaMP6 Transgenic Mice for Neuronal Population Imaging In Vivo , 2014, PloS one.

[197]  Tony F. Chan,et al.  An Active Contour Model without Edges , 1999, Scale-Space.

[198]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[199]  Krishna V. Shenoy,et al.  Computation Through Neural Population Dynamics. , 2020, Annual review of neuroscience.