Dendritic branching angles of pyramidal cells across layers of the juvenile rat somatosensory cortex

The characterization of the structural design of cortical microcircuits is essential for understanding how they contribute to function in both health and disease. Since pyramidal neurons represent the most abundant neuronal type and their dendritic spines constitute the major postsynaptic elements of cortical excitatory synapses, our understanding of the synaptic organization of the neocortex largely depends on the available knowledge regarding the structure of pyramidal cells. Previous studies have identified several apparently common rules in dendritic geometry. We study the dendritic branching angles of pyramidal cells across layers to further shed light on the principles that determine the geometric shapes of these cells. We find that the dendritic branching angles of pyramidal cells from layers II–VI of the juvenile rat somatosensory cortex suggest common design principles, despite the particular morphological and functional features that are characteristic of pyramidal cells in each cortical layer. J. Comp. Neurol. 524:2567–2576, 2016. © 2016 Wiley Periodicals, Inc.

[1]  Arthur Pewsey,et al.  A Family of Symmetric Distributions on the Circle , 2005 .

[2]  D. Zwillinger Handbook of differential equations , 1990 .

[3]  Milos Judas,et al.  Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: a layer-specific pattern. , 2008, Cerebral cortex.

[4]  Concha Bielza,et al.  Laminar Differences in Dendritic Structure of Pyramidal Neurons in the Juvenile Rat Somatosensory Cortex , 2016, Cerebral cortex.

[5]  P. Sprent,et al.  Statistical Analysis of Circular Data. , 1994 .

[6]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[7]  G. J. G. Upton,et al.  Spatial data Analysis by Example , 1985 .

[8]  J. Jacobs,et al.  Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study. , 2001, Cerebral cortex.

[9]  B. Heller Circular Statistics in Biology, Edward Batschelet. Academic Press, London & New York (1981), 371, Price $69.50 , 1983 .

[10]  Javier DeFelipe,et al.  The dendritic spine story: an intriguing process of discovery , 2015, Front. Neuroanat..

[11]  Nicholas I. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[12]  Concha Bielza,et al.  Branching angles of pyramidal cell dendrites follow common geometrical design principles in different cortical areas , 2014, Scientific Reports.

[13]  Ibrahim Mohamed,et al.  Boxplot for circular variables , 2012, Comput. Stat..

[14]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[15]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[16]  Dmitri B Chklovskii,et al.  Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors , 2009, Proceedings of the National Academy of Sciences.

[17]  A. Larkman Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns , 1991, The Journal of comparative neurology.

[18]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[19]  Michael A. Stephens,et al.  Tests of fit for the von Mises distribution , 1985 .

[20]  G. S. Watson Statistics on Spheres , 1983 .

[21]  Claudio Agostinelli,et al.  circular: Circular Statistics, from "Topics in circular Statistics" (2001) S. Rao Jammalamadaka and A. SenGupta, World Scientific. , 2004 .

[22]  Concha Bielza,et al.  Models and Simulation of 3D Neuronal Dendritic Trees Using Bayesian Networks , 2011, Neuroinformatics.

[23]  V. Murthy,et al.  Dendritic Spines , 2002, Current Biology.

[24]  G. S. Watson,et al.  ON THE CONSTRUCTION OF SIGNIFICANCE TESTS ON THE CIRCLE AND THE SPHERE , 1956 .

[25]  Rafael Yuste,et al.  Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions. , 2013, Cerebral cortex.

[26]  G. Elston,et al.  The Pyramidal Cell in Cognition: A Comparative Study in Human and Monkey , 2001, The Journal of Neuroscience.

[27]  J. DeFelipe,et al.  Density and morphology of dendritic spines in mouse neocortex , 2006, Neuroscience.

[28]  T. Coburn Spatial Data Analysis by Example , 1991 .

[29]  S. R. Jammalamadaka,et al.  Topics in Circular Statistics , 2001 .

[30]  Alexander Borst,et al.  One Rule to Grow Them All: A General Theory of Neuronal Branching and Its Practical Application , 2010, PLoS Comput. Biol..

[31]  H. S. Meyer,et al.  Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex , 2011, Cerebral cortex.

[32]  G. Elston Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. , 2003, Cerebral cortex.

[33]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[34]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[35]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[36]  Rafael Yuste,et al.  Dendritic size of pyramidal neurons differs among mouse cortical regions. , 2006, Cerebral cortex.

[37]  Dmitri B Chklovskii,et al.  A cost-benefit analysis of neuronal morphology. , 2008, Journal of neurophysiology.

[38]  Giorgio A Ascoli,et al.  Functional Impact of Dendritic Branch-Point Morphology , 2013, The Journal of Neuroscience.

[39]  Nelson Spruston,et al.  Dendritic integration: 60 years of progress , 2015, Nature Neuroscience.

[40]  Kees Mulder,et al.  Circular Statistics in R , 2015 .

[41]  Robert Sinclair,et al.  Geometric Theory Predicts Bifurcations in Minimal Wiring Cost Trees in Biology Are Flat , 2012, PLoS Comput. Biol..

[42]  Hermann Cuntz,et al.  A scaling law derived from optimal dendritic wiring , 2012, Proceedings of the National Academy of Sciences.

[43]  G. Ascoli,et al.  Statistical morphological analysis of hippocampal principal neurons indicates cell‐specific repulsion of dendrites from their own cell , 2003, Journal of neuroscience research.

[44]  Harry B. M. Uylings,et al.  The Flatness of Bifurcations in 3D Dendritic Trees: An Optimal Design , 2012, Front. Comput. Neurosci..

[45]  Idan Segev,et al.  Optimization principles of dendritic structure , 2007, Theoretical Biology and Medical Modelling.

[46]  Patrick J Coskren,et al.  The electrotonic structure of pyramidal neurons contributing to prefrontal cortical circuits in macaque monkeys is significantly altered in aging. , 2009, Cerebral cortex.