Influence of electron–electron collisions on the formation of a nonlocal EDF

The influence of electron–electron collisions on the formation of a nonlocal electron distribution function (EDF) and other characteristics of the electron gas are analyzed. Correct expressions for the coefficients in the integral of electron–electron collisions are obtained that are suitable for substitution into the kinetic Boltzmann equation averaged over the volume. This method of EDF calculation is implemented in COMSOL Multiphysics software. The example of positive column plasma in argon shows that accounting for electron–electron collisions leads both to differences between nonlocal and local EDFs and to dependence on the ionization degree.

[1]  U. Czarnetzki,et al.  Information hidden in the velocity distribution of ions and the exact kinetic Bohm criterion , 2017, Plasma Sources Science and Technology.

[2]  C. Yuan,et al.  Ambipolar field role in formation of electron distribution function in gas discharge plasma , 2017, Scientific Reports.

[3]  Y. Golubovskii,et al.  Diffusion-path approximation in nonlocal electron kinetics , 2017, Russian Journal of Physical Chemistry B.

[4]  U. Czarnetzki,et al.  The exact form of the Bohm criterion for a collisional plasma , 2016, 1603.00515.

[5]  G. Hagelaar,et al.  Coulomb collisions in the Boltzmann equation for electrons in low-temperature gas discharge plasmas , 2016 .

[6]  M. Capitelli,et al.  Superelastic collisions under low temperature plasma and afterglow conditions: A golden rule to estimate their quantitative effects , 2015 .

[7]  K. Kapustin,et al.  The role of the ambipolar field and the local approximation inapplicability in determination of the electron distribution function at high pressures , 2015 .

[8]  K. Kapustin,et al.  The role of the ambipolar field and the local approximation inapplicability in determination of the electron distribution function at high pressures , 2015, Technical Physics Letters.

[9]  M. Krasilnikov,et al.  Fundamental limitations of the local approximation for electron distribution function and fluid model in bounded plasmas , 2014 .

[10]  Mario Capitelli,et al.  An efficient energy-conserving numerical model for the electron energy distribution function in the presence of electron-electron collisions , 2010, Comput. Phys. Commun..

[11]  L. G. Leal,et al.  Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes , 2007 .

[12]  U. Czarnetzki,et al.  Plasma boundary sheath in the afterglow of a pulsed inductively coupled RF plasma , 2007 .

[13]  L. Pitchford,et al.  Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models , 2005 .

[14]  D. Loffhagen Impact of Electron–Electron Collisions on the Spatial Electron Relaxation in Non-Isothermal Plasmas , 2005 .

[15]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing: Lieberman/Plasma 2e , 2005 .

[16]  L. Tsendin,et al.  Paradoxical nonmonotonic behavior of excitation-rate spatial profiles in bounded plasmas. , 2005, Physical review letters.

[17]  V. Kolobov,et al.  Nonlocal phenomena in the positive column of a medium-pressure glow discharge , 2004 .

[18]  V. Kolobov,et al.  Substantiation of the two-temperature kinetic model by comparing calculations within the kinetic and fluid models of the positive column plasma of a dc oxygen discharge , 2003 .

[19]  U. Kortshagen,et al.  Kinetic two-dimensional modeling of inductively coupled plasmas based on a hybrid kinetic approach , 1999 .

[20]  J. Behnke,et al.  A comparison of kinetic and fluid models of the positive column of discharges in inert gases , 1999 .

[21]  A. Kudryavtsev,et al.  Modeling of nonlocal slow-electron kinetics in a low-pressure negative-glow plasma , 1999 .

[22]  Parker,et al.  Comparison of Monte Carlo simulations and nonlocal calculations of the electron distribution function in a positive column plasma. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  Uwe R. Kortshagen,et al.  On simplifying approaches to the solution of the Boltzmann equation in spatially inhomogeneous plasmas , 1996 .

[24]  Tsendin,et al.  Experimental investigation and fast two-dimensional self-consistent kinetic modeling of a low-pressure inductively coupled rf discharge. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  L. Tsendin Electron kinetics in non-uniform glow discharge plasmas , 1995 .

[26]  M. Capitelli,et al.  The influence of electron—electron collisions on electron energy distribution functions in N2 post discharge , 1993 .

[27]  Anatoly P. Napartovich,et al.  Electron energy distribution function in decaying nitrogen plasmas , 1993 .

[28]  Benjamin Alexandrovich,et al.  Measurement of electron energy distribution in low-pressure RF discharges , 1992 .

[29]  Yousfi,et al.  Boltzmann-equation analysis of electron kinetics in a positive column of low-pressure Hg-rare-gas discharges. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[30]  L. Tsendin Positive column of a low-density, low-pressure discharge. II - Ion motion and radial potential distribution , 1978 .

[31]  H. Claassen A Useful Simple Recursion Formula to Account for Inelastic Collision Effects on the Electron Distribution in a Plasma , 1973 .

[32]  Stephen D. Rockwood,et al.  Elastic and Inelastic Cross Sections for Electron-Hg Scattering from Hg Transport Data , 1973 .

[33]  I. Bernstein,et al.  Electron Energy Distributions in Stationary Discharges , 1954 .