Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles

[1]  Wolfgang Ziegler,et al.  Modern Aspects Of Electrochemistry , 2016 .

[2]  N. Dasgupta,et al.  Semiconductor Nanowires for Artificial Photosynthesis , 2014 .

[3]  Haifeng Lv,et al.  Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. , 2013, Journal of the American Chemical Society.

[4]  Paul J. A. Kenis,et al.  Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities , 2013 .

[5]  T. Faunce,et al.  Energy and Environment Policy Case for a Global Project on Artificial Photosynthesis , 2013 .

[6]  Jens K Nørskov,et al.  Understanding Trends in the Electrocatalytic Activity of Metals and Enzymes for CO2 Reduction to CO. , 2013, The journal of physical chemistry letters.

[7]  P. Kenis,et al.  Electrochemical conversion of CO 2 to useful chemicals: current status, remaining challenges, and future opportunities , 2013 .

[8]  Ib Chorkendorff,et al.  Enabling direct H2O2 production through rational electrocatalyst design. , 2013, Nature materials.

[9]  Yihong Chen,et al.  Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. , 2012, Journal of the American Chemical Society.

[10]  Sichao Ma,et al.  Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO. , 2012, Journal of the American Chemical Society.

[11]  Ten-nanometer dense hole arrays generated by nanoparticle lithography. , 2012, Nano letters.

[12]  Jean-Marie Tarascon,et al.  Towards systems materials engineering. , 2012, Nature materials.

[13]  Zhichuan J. Xu,et al.  Compositional dependence of the stability of AuCu alloy nanoparticles. , 2012, Chemical communications.

[14]  Thomas F. Jaramillo,et al.  New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces , 2012 .

[15]  Matthew W Kanan,et al.  CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. , 2012, Journal of the American Chemical Society.

[16]  C. Buess-Herman,et al.  Electroreduction of Carbon Dioxide on Copper-Based Electrodes: Activity of Copper Single Crystals and Copper–Gold Alloys , 2012, Electrocatalysis.

[17]  Yihong Chen,et al.  Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. , 2012, Journal of the American Chemical Society.

[18]  Andrew A. Peterson,et al.  Activity Descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts , 2012 .

[19]  William J. Durand,et al.  The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. , 2012, Physical chemistry chemical physics : PCCP.

[20]  Christina W. Li,et al.  CO 2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu 2 O Films , 2012 .

[21]  P. Kenis,et al.  Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials , 2011, Science.

[22]  S. Majetich,et al.  Ultra-large-area self-assembled monolayers of nanoparticles. , 2011, ACS nano.

[23]  Yusuke Yamada,et al.  Nanocrystal bilayer for tandem catalysis. , 2011, Nature chemistry.

[24]  Mark P. Stoykovich,et al.  Solvent-Dependent Surface Plasmon Response and Oxidation of Copper Nanocrystals , 2011 .

[25]  Ian T. Sines,et al.  Au−Cu Alloy Nanoparticles with Tunable Compositions and Plasmonic Properties: Experimental Determination of Composition and Correlation with Theory , 2010 .

[26]  Andrew A. Peterson,et al.  How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels , 2010 .

[27]  P. Yang,et al.  Room‐Temperature Formation of Hollow Cu2O Nanoparticles , 2010, Advanced materials.

[28]  Z. Tang,et al.  Nanoparticle assemblies for biological and chemical sensing , 2010 .

[29]  A. Moshfegh,et al.  Nanoparticle catalysts , 2009 .

[30]  Katsuhiko Ariga,et al.  Soft Langmuir–Blodgett Technique for Hard Nanomaterials , 2009 .

[31]  H. Gasteiger,et al.  Just a Dream—or Future Reality? , 2009, Science.

[32]  J. Nørskov,et al.  Towards the computational design of solid catalysts. , 2009, Nature chemistry.

[33]  Y. Hori,et al.  Electrochemical CO 2 Reduction on Metal Electrodes , 2008 .

[34]  H. Jaeger,et al.  Elastic membranes of close-packed nanoparticle arrays. , 2007, Nature materials.

[35]  Peidong Yang,et al.  Tunable plasmonic lattices of silver nanocrystals. , 2007, Nature nanotechnology.

[36]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[37]  Anne C. Co,et al.  A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper , 2006 .

[38]  Jin Xie,et al.  One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical applications , 2006 .

[39]  Akira Murata,et al.  "Deactivation of copper electrode" in electrochemical reduction of CO2 , 2005 .

[40]  Thomas Bligaard,et al.  Trends in the exchange current for hydrogen evolution , 2005 .

[41]  A. Sra,et al.  Direct Solution Synthesis of Intermetallic AuCu and AuCu3 Nanocrystals and Nanowire Networks , 2005 .

[42]  M. Dresselhaus,et al.  Alternative energy technologies , 2001, Nature.

[43]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[44]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[45]  Y. Hori,et al.  Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution , 1990 .

[46]  V. Nemoshkalenko,et al.  Changes in energy structure of Cu3Au and CuAu3 alloys studied by the method of X-ray photoelectron spectroscopy , 1976 .

[47]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .