Durable High Polymer Content m/p-Polybenzimidazole Membranes for Extended Lifetime Electrochemical Devices
暂无分享,去创建一个
Brian C. Benicewicz | Guoqing Qian | F. Huang | G. Qian | B. Benicewicz | Andrew T. Pingitore | Fei Huang
[1] Brian C. Benicewicz,et al. Synthesis and Characterization of Pyridine‐Based Polybenzimidazoles for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications , 2005 .
[2] J. Jensen,et al. Oxidative Degradation of Polybenzimidazole Membranes as Electrolytes for High Temperature Proton Exchange Membrane Fuel Cells , 2011 .
[3] Brian C. Benicewicz,et al. Sulfonated Polybenzimidazoles for High Temperature PEM Fuel Cells , 2010 .
[4] Brian C. Benicewicz,et al. Polybenzimidazole/Acid Complexes as High-Temperature Membranes , 2008 .
[5] F. Marone,et al. Operando X-ray Tomographic Microscopy Imaging of HT-PEFC: A Comparative Study of Phosphoric Acid Electrolyte Migration , 2016 .
[6] H. Ploehn,et al. High Temperature Creep Behavior of Phosphoric Acid-Polybenzimidazole Gel Membranes , 2015 .
[7] Brian C. Benicewicz,et al. High-Temperature Polybenzimidazole Fuel Cell Membranes via a Sol-Gel Process , 2005 .
[8] T. Schmidt. Durability and Degradation in High-Temperature Polymer Electrolyte Fuel Cells , 2006 .
[9] Brian C. Benicewicz,et al. Synthesis and Properties of Functionalized Polybenzimidazoles for High-Temperature PEMFCs , 2009 .
[10] D. Aili,et al. Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole , 2017 .
[11] G. Qian,et al. Polybenzimidazole‐based block copolymers: From monomers to membrane electrode assemblies for high temperature polymer electrolyte membrane fuel cells , 2017 .
[12] R. Savinell,et al. A Polymer Electrolyte for Operation at Temperatures up to 200°C , 1994 .
[13] M. Rastedt,et al. Investigation of Phosphoric Acid Distribution in PBI Based HT-PEM Fuel Cells , 2015 .
[14] H. Dhar,et al. Nature of CO Adsorption during H 2 Oxidation in Relation to Modeling for CO Poisoning of a Fuel Cell Anode , 1987 .
[15] Karren L. More,et al. A Comparative Study of Phosphoric Acid-Doped m-PBI Membranes , 2014 .
[16] B. Benicewicz,et al. A new sequence isomer of AB‐polybenzimidazole for high‐temperature PEM fuel cells , 2012 .
[17] Pedro Gómez-Romero,et al. Recent Developments on Proton Conduc‐ting Poly(2,5‐benzimidazole) (ABPBI) Membranes for High Temperature Poly‐mer Electrolyte Membrane Fuel Cells , 2005 .
[18] G. Qian,et al. Synthesis and characterization of high molecular weight hexafluoroisopropylidene‐containing polybenzimidazole for high‐temperature polymer electrolyte membrane fuel cells , 2009 .
[19] X. Li,et al. Synthesis and Characterization of a New Fluorine‐Containing Polybenzimidazole (PBI) for Proton‐Conducting Membranes in Fuel Cells , 2013 .
[20] H. Ploehn,et al. High Polymer Content 2,5‐Pyridine‐Polybenzimidazole Copolymer Membranes with Improved Compressive Properties , 2014 .
[21] M. Hickner,et al. Alternative polymer systems for proton exchange membranes (PEMs). , 2004, Chemical reviews.
[22] K. Artyushkova,et al. Implementing PGM-free electrocatalysts in high-temperature polymer electrolyte membrane fuel cells , 2018, Electrochemistry Communications.
[23] T. Schmidt,et al. Durability and Reliability in High-Temperature Reformed Hydrogen PEFCs , 2006 .
[24] Taylor R. Garrick,et al. Characterizing Voltage Losses in an SO2 Depolarized Electrolyzer Using Sulfonated Polybenzimidazole Membranes , 2017 .
[25] Brian C. Benicewicz,et al. Electrochemical hydrogen pumping using a high-temperature polybenzimidazole (PBI) membrane , 2008 .