Durable High Polymer Content m/p-Polybenzimidazole Membranes for Extended Lifetime Electrochemical Devices

A series of high polymer content phosphoric acid-doped m/p-polybenzimidazole (PBI) copolymer membranes were prepared via the poly(phosphoric acid) (PPA) process. These copolymer membranes showed much higher solubility in solution (7–10 wt %) compared to the homopolymer para-PBI (typically 150 mS/cm at typical operating temperatures of 160–200 °C, and showed exceptional low voltage decay, ∼0.67 μV/h when tested at 160 °C for more than 2 years.

[1]  Brian C. Benicewicz,et al.  Synthesis and Characterization of Pyridine‐Based Polybenzimidazoles for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications , 2005 .

[2]  J. Jensen,et al.  Oxidative Degradation of Polybenzimidazole Membranes as Electrolytes for High Temperature Proton Exchange Membrane Fuel Cells , 2011 .

[3]  Brian C. Benicewicz,et al.  Sulfonated Polybenzimidazoles for High Temperature PEM Fuel Cells , 2010 .

[4]  Brian C. Benicewicz,et al.  Polybenzimidazole/Acid Complexes as High-Temperature Membranes , 2008 .

[5]  F. Marone,et al.  Operando X-ray Tomographic Microscopy Imaging of HT-PEFC: A Comparative Study of Phosphoric Acid Electrolyte Migration , 2016 .

[6]  H. Ploehn,et al.  High Temperature Creep Behavior of Phosphoric Acid-Polybenzimidazole Gel Membranes , 2015 .

[7]  Brian C. Benicewicz,et al.  High-Temperature Polybenzimidazole Fuel Cell Membranes via a Sol-Gel Process , 2005 .

[8]  T. Schmidt Durability and Degradation in High-Temperature Polymer Electrolyte Fuel Cells , 2006 .

[9]  Brian C. Benicewicz,et al.  Synthesis and Properties of Functionalized Polybenzimidazoles for High-Temperature PEMFCs , 2009 .

[10]  D. Aili,et al.  Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole , 2017 .

[11]  G. Qian,et al.  Polybenzimidazole‐based block copolymers: From monomers to membrane electrode assemblies for high temperature polymer electrolyte membrane fuel cells , 2017 .

[12]  R. Savinell,et al.  A Polymer Electrolyte for Operation at Temperatures up to 200°C , 1994 .

[13]  M. Rastedt,et al.  Investigation of Phosphoric Acid Distribution in PBI Based HT-PEM Fuel Cells , 2015 .

[14]  H. Dhar,et al.  Nature of CO Adsorption during H 2 Oxidation in Relation to Modeling for CO Poisoning of a Fuel Cell Anode , 1987 .

[15]  Karren L. More,et al.  A Comparative Study of Phosphoric Acid-Doped m-PBI Membranes , 2014 .

[16]  B. Benicewicz,et al.  A new sequence isomer of AB‐polybenzimidazole for high‐temperature PEM fuel cells , 2012 .

[17]  Pedro Gómez-Romero,et al.  Recent Developments on Proton Conduc‐ting Poly(2,5‐benzimidazole) (ABPBI) Membranes for High Temperature Poly‐mer Electrolyte Membrane Fuel Cells , 2005 .

[18]  G. Qian,et al.  Synthesis and characterization of high molecular weight hexafluoroisopropylidene‐containing polybenzimidazole for high‐temperature polymer electrolyte membrane fuel cells , 2009 .

[19]  X. Li,et al.  Synthesis and Characterization of a New Fluorine‐Containing Polybenzimidazole (PBI) for Proton‐Conducting Membranes in Fuel Cells , 2013 .

[20]  H. Ploehn,et al.  High Polymer Content 2,5‐Pyridine‐Polybenzimidazole Copolymer Membranes with Improved Compressive Properties , 2014 .

[21]  M. Hickner,et al.  Alternative polymer systems for proton exchange membranes (PEMs). , 2004, Chemical reviews.

[22]  K. Artyushkova,et al.  Implementing PGM-free electrocatalysts in high-temperature polymer electrolyte membrane fuel cells , 2018, Electrochemistry Communications.

[23]  T. Schmidt,et al.  Durability and Reliability in High-Temperature Reformed Hydrogen PEFCs , 2006 .

[24]  Taylor R. Garrick,et al.  Characterizing Voltage Losses in an SO2 Depolarized Electrolyzer Using Sulfonated Polybenzimidazole Membranes , 2017 .

[25]  Brian C. Benicewicz,et al.  Electrochemical hydrogen pumping using a high-temperature polybenzimidazole (PBI) membrane , 2008 .