Design analysis of hybrid silicon-on-nothing photonic crystal–nanoantenna structures for engineering of midinfrared radiative properties

Abstract. Electromagnetic (EM) behaviors of photonic crystals (PhCs) and nanoantenna (NA) arrays have been extensively studied and applied to a myriad of applications, including light absorption, surface-enhanced Raman scattering, light trapping in photovoltaics, and spectral narrowing of thermal emission. However, not many works have studied the integration of three-dimensional (3-D) PhCs and NA arrays into one structure mainly due to technical challenges in manufacturing 3-D PhCs. The present article reports the design analysis of a hybrid optical structure that has a gold rectangular NA array aligned on a 3-D silicon-on-nothing (SON) PhC substrate. By applying a continuous phase field model, we numerically simulate the formation of SON-PhC structures (i.e., a 3-D periodic array of spherical voids in silicon) during the high-temperature annealing process of a silicon substrate having vertical trenches. Photonic behaviors of the NA-on-SON PhC structure are computed using the finite-difference time-domain method. The obtained results exhibit the resonant absorption of midinfrared (mid-IR) light in the stopping bands of the SON-PhC (3.0  μm  <  λ  <  7.5  μm) by photon coupling with the free electron oscillations in each NA structure. This PhC-mediated NA resonance is manifested by highly concentrated electric fields at NA corners; the corresponding local field enhancement factor is one order of magnitude greater than that of the NA array on a bare silicon substrate.

[1]  Raúl García-Llamas,et al.  Experimental determination of a surface wave at the one-dimensional photonic crystal-metal interface , 2008 .

[2]  Gilles Lerondel,et al.  Quantitative analysis and near-field observation of strong coupling between plasmonic nanogap and silicon waveguides , 2012 .

[3]  Ichiro Mizushima,et al.  Micro-structure Transformation of Silicon: A Newly Developed Transformation Technology for Patterning Silicon Surfaces using the Surface Migration of Silicon Atoms by Hydrogen Annealing , 2000 .

[4]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[5]  Peter Bermel,et al.  Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. , 2007, Optics express.

[6]  David J. Perreault,et al.  Resonant-cavity enhanced thermal emission , 2005 .

[7]  David L. Kaplan,et al.  Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays , 2009, Proceedings of the National Academy of Sciences.

[8]  Guy A. E. Vandenbosch,et al.  Optimal solar energy harvesting efficiency of nano-rectenna systems , 2013 .

[9]  J. Lakowicz,et al.  Radiative decay engineering 7: Tamm state-coupled emission using a hybrid plasmonic-photonic structure. , 2014, Analytical biochemistry.

[10]  Javier Aizpurua,et al.  Controlling the near-field oscillations of loaded plasmonic nanoantennas , 2009 .

[11]  Jeremy J. Baumberg,et al.  Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials , 2015, Scientific Reports.

[12]  Daniel Wasserman,et al.  Review of mid-infrared plasmonic materials , 2015 .

[13]  L. Novotný,et al.  Antennas for light , 2011 .

[14]  Ming C. Wu,et al.  Thermal annealing in hydrogen for 3-D profile transformation on silicon-on-insulator and sidewall roughness reduction , 2006, Journal of Microelectromechanical Systems.

[15]  Jorge Gaspar-Armenta,et al.  Electromagnetic surface waves at a metal 2D photonic crystal interface , 2013 .

[16]  Ross Stanley,et al.  Plasmonics in the mid-infrared , 2012, Nature Photonics.

[17]  Joseba Zubia,et al.  Local Field Enhancement of Mid-Infrared Light in an Integrated Photonic-Plasmonic Structure , 2015, Journal of Lightwave Technology.

[18]  Hung-Hsin Chen,et al.  Wavelength selective plasmonic thermal emitter by polarization utilizing Fabry-Pérot type resonances , 2011 .

[19]  R. Carminati,et al.  Coherent thermal antenna using a photonic crystal slab. , 2006, Physical review letters.

[20]  B. Gesemann,et al.  Thermal emission properties of 2D and 3D silicon photonic crystals , 2008, 2008 5th IEEE International Conference on Group IV Photonics.

[21]  Ichiro Mizushima,et al.  Empty-space-in-silicon technique for fabricating a silicon-on-nothing structure , 2000 .

[22]  Harry A. Atwater,et al.  Tunable large resonant absorption in a midinfrared graphene Salisbury screen , 2014 .

[23]  Jihwan Song,et al.  Computational kinetic study of chemotactic cell migration , 2013 .

[24]  Yang Li,et al.  Achieving Strong Field Enhancement and Light Absorption Simultaneously with Plasmonic Nanoantennas Exploiting Film-Coupled Triangular Nanodisks , 2017 .

[25]  Bong Jae Lee,et al.  Design and fabrication of planar multilayer structures with coherent thermal emission characteristics , 2006 .

[26]  Stefan Zukotynski,et al.  High-efficiency photonic crystal solar cell architecture. , 2009, Optics express.

[27]  Austin Hsiao,et al.  A wafer-scale backplane-assisted resonating nanoantenna array SERS device created by tunable thermal dewetting nanofabrication , 2014, Nanotechnology.

[28]  O. Wolfbeis,et al.  Photonic crystals for chemical sensing and biosensing. , 2014, Angewandte Chemie.

[29]  Alessandro Toscano,et al.  Exploiting the surface dispersion of nanoparticles to design optical-resistive sheets and Salisbury absorbers. , 2016, Optics letters.

[30]  Ichiro Mizushima,et al.  Fabrication of Silicon-on-Nothing Structure by Substrate Engineering Using the Empty-Space-in-Silicon Formation Technique , 2004 .

[31]  W. Barnes,et al.  Collective resonances in gold nanoparticle arrays. , 2008, Physical review letters.

[32]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[33]  G. Ozin,et al.  Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres , 2000, Nature.

[34]  P. Yeh,et al.  Electromagnetic propagation in periodic stratified media. I. General theory , 1977 .

[35]  Magali Brunet,et al.  High-Density 3-D Capacitors for Power Systems On-Chip: Evaluation of a Technology Based on Silicon Submicrometer Pore Arrays Formed by Electrochemical Etching , 2013, IEEE Transactions on Power Electronics.

[36]  E. Almpanis,et al.  Designing photonic structures of nanosphere arrays on reflectors for total absorption , 2013 .

[37]  Jorge Gaspar-Armenta,et al.  Photonic surface-wave excitation: photonic crystal–metal interface , 2003 .

[38]  Susumu Noda,et al.  Realization of dynamic thermal emission control. , 2014, Nature materials.

[39]  H. Benisty,et al.  Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission , 2015 .

[40]  Sunil Jeong,et al.  Equilibrium Morphology of Plasmonic Au/Polystyrene Dimeric Nanoparticle , 2015 .

[41]  Akhlesh Lakhtakia,et al.  Excitation of multiple surface-plasmon-polariton waves guided by the periodically corrugated interface of a metal and a periodic multilayered isotropic dielectric material , 2012 .

[42]  F. Golmar,et al.  Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots , 2012, Nature Communications.

[43]  Taewook Kang,et al.  Immiscible oil-water interface: dual function of electrokinetic concentration of charged molecules and optical detection with interfacially trapped gold nanorods. , 2014, Analytical chemistry.

[44]  Gordon S. Kino,et al.  Optical antennas: Resonators for local field enhancement , 2003 .

[45]  R. Wehrspohn,et al.  Thermal emission properties of 2D and 3D silicon photonic crystals , 2008, 2008 5th IEEE International Conference on Group IV Photonics.

[46]  Bong Jae Lee,et al.  Coherent Thermal Emission From Modified Periodic Multilayer Structures , 2007 .

[47]  L. Mescia,et al.  Design of optical antenna for solar energy collection , 2012 .

[48]  Jan Linnros,et al.  Macro pore and pillar array formation in silicon by electrochemical etching , 2006 .

[49]  Liang Dong,et al.  Photonic-plasmonic integration through the fusion of photonic crystal cavity and metallic structure , 2011 .

[50]  W. Wijaranakula,et al.  An experimental estimation of silicon interstitial diffusivity , 1990 .

[51]  Jihwan Song,et al.  Three-dimensional chemotaxis model for a crawling neutrophil. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Peter Nordlander,et al.  Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties. , 2013, Journal of the American Chemical Society.

[53]  I. Celanovic,et al.  Tailoring thermal emission via Q matching of photonic crystal resonances , 2011 .

[54]  Gennady Shvets,et al.  Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays. , 2010, Optics express.

[55]  Joseba Zubia,et al.  Coupling mid-infrared light from a photonic crystal waveguide to metallic transmission lines , 2014 .

[56]  Alexander V. Korovin,et al.  Broadband Omnidirectional Diversion of Light in Hybrid Plasmonic‐Photonic Heterocrystals , 2011 .