Limits of locally–globally convergent graph sequences

The colored neighborhood metric for sparse graphs was introduced by Bollobas and Riordan. The corresponding convergence notion refines a convergence notion introduced by Benjamini and Schramm. We prove that even in this refined sense, the limit of a convergent graph sequence (with uniformly bounded degree) can be represented by a graphing. We study various topics related to this convergence notion such as: Bernoulli graphings, factor of i.i.d. processes and hyperfiniteness.

[1]  H. Busemann Advances in mathematics , 1961 .

[2]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[3]  N. Alon Eigenvalues and expanders , 1986, Comb..

[4]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[5]  Stevo Todorcevic,et al.  BOREL CHROMATIC NUMBERS , 1999 .

[6]  O. Cohen Recurrence of Distributional Limits of Finite Planar Graphs , 2000 .

[7]  Alexander S. Kechris,et al.  Topics in orbit equivalence , 2004 .

[8]  G. Elek On limits of finite graphs , 2005, math/0505335.

[9]  László Lovász,et al.  Limits of dense graph sequences , 2004, J. Comb. Theory B.

[10]  D. Aldous,et al.  Processes on Unimodular Random Networks , 2006, math/0603062.

[11]  G. Elek The combinatorial cost , 2006, math/0608474.

[12]  B. Szegedy,et al.  Szemerédi’s Lemma for the Analyst , 2007 .

[13]  V. Sós,et al.  Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.

[14]  Gábor Elek Note on limits of finite graphs , 2007, Comb..

[15]  O. Schramm Hyperfinite graph limits , 2007, 0711.3808.

[16]  C. Borgs,et al.  Moments of Two-Variable Functions and the Uniqueness of Graph Limits , 2008, 0803.1244.

[17]  G'abor Elek,et al.  A measure-theoretic approach to the theory of dense hypergraphs , 2008, 0810.4062.

[18]  Oded Schramm,et al.  Every minor-closed property of sparse graphs is testable , 2008, Electron. Colloquium Comput. Complex..

[19]  Gabor Lippner,et al.  Borel oracles. An analytical approach to constant-time algorithms , 2009, 0907.1805.

[20]  Krzysztof Onak,et al.  Local Graph Partitions for Approximation and Testing , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[21]  A. Kechris Global Aspects of Ergodic Group Actions , 2010 .

[22]  Béla Bollobás,et al.  Sparse graphs: Metrics and random models , 2008, Random Struct. Algorithms.

[23]  V. Sós,et al.  Convergent Sequences of Dense Graphs II. Multiway Cuts and Statistical Physics , 2012 .

[24]  Miklós Abért,et al.  Bernoulli actions are weakly contained in any free action , 2011, Ergodic Theory and Dynamical Systems.

[25]  László Lovász,et al.  Large Networks and Graph Limits , 2012, Colloquium Publications.

[26]  G. Elek Finite graphs and amenability , 2012, 1204.0449.

[27]  László Lovász,et al.  Left and right convergence of graphs with bounded degree , 2010, Random Struct. Algorithms.

[28]  Madhu Sudan,et al.  Limits of local algorithms over sparse random graphs , 2013, ITCS.