Limits of locally–globally convergent graph sequences
暂无分享,去创建一个
[1] H. Busemann. Advances in mathematics , 1961 .
[2] Noga Alon,et al. lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.
[3] N. Alon. Eigenvalues and expanders , 1986, Comb..
[4] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[5] Stevo Todorcevic,et al. BOREL CHROMATIC NUMBERS , 1999 .
[6] O. Cohen. Recurrence of Distributional Limits of Finite Planar Graphs , 2000 .
[7] Alexander S. Kechris,et al. Topics in orbit equivalence , 2004 .
[8] G. Elek. On limits of finite graphs , 2005, math/0505335.
[9] László Lovász,et al. Limits of dense graph sequences , 2004, J. Comb. Theory B.
[10] D. Aldous,et al. Processes on Unimodular Random Networks , 2006, math/0603062.
[11] G. Elek. The combinatorial cost , 2006, math/0608474.
[12] B. Szegedy,et al. Szemerédi’s Lemma for the Analyst , 2007 .
[13] V. Sós,et al. Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.
[14] Gábor Elek. Note on limits of finite graphs , 2007, Comb..
[15] O. Schramm. Hyperfinite graph limits , 2007, 0711.3808.
[16] C. Borgs,et al. Moments of Two-Variable Functions and the Uniqueness of Graph Limits , 2008, 0803.1244.
[17] G'abor Elek,et al. A measure-theoretic approach to the theory of dense hypergraphs , 2008, 0810.4062.
[18] Oded Schramm,et al. Every minor-closed property of sparse graphs is testable , 2008, Electron. Colloquium Comput. Complex..
[19] Gabor Lippner,et al. Borel oracles. An analytical approach to constant-time algorithms , 2009, 0907.1805.
[20] Krzysztof Onak,et al. Local Graph Partitions for Approximation and Testing , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
[21] A. Kechris. Global Aspects of Ergodic Group Actions , 2010 .
[22] Béla Bollobás,et al. Sparse graphs: Metrics and random models , 2008, Random Struct. Algorithms.
[23] V. Sós,et al. Convergent Sequences of Dense Graphs II. Multiway Cuts and Statistical Physics , 2012 .
[24] Miklós Abért,et al. Bernoulli actions are weakly contained in any free action , 2011, Ergodic Theory and Dynamical Systems.
[25] László Lovász,et al. Large Networks and Graph Limits , 2012, Colloquium Publications.
[26] G. Elek. Finite graphs and amenability , 2012, 1204.0449.
[27] László Lovász,et al. Left and right convergence of graphs with bounded degree , 2010, Random Struct. Algorithms.
[28] Madhu Sudan,et al. Limits of local algorithms over sparse random graphs , 2013, ITCS.