First spray pyrolysis thin film fabrication of environment-friendly Cu2BaSnS4 (CBTS) nanomaterials

[1]  L. Wong,et al.  Silver and Potassium Incorporation in Double-Layer Solution-Processed Cu2ZnSnS4 Solar Cell , 2020 .

[2]  JunHo Kim,et al.  Control of Defect States of Kesterite Solar Cells to Achieve More Than 11% Power Conversion Efficiency , 2020 .

[3]  O. Hansen,et al.  TaS2 Back Contact Improving Oxide-Converted Cu2BaSnS4 Solar Cells , 2020 .

[4]  I. Ivanov,et al.  Microbial Approach to Low-Cost Production of Photovoltaic Nanomaterials , 2019, ACS Sustainable Chemistry & Engineering.

[5]  Qiaobao Zhang,et al.  Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. , 2019, Chemical Society reviews.

[6]  D. Mitzi,et al.  I2–II–IV–VI4 (I = Cu, Ag; II = Sr, Ba; IV = Ge, Sn; VI = S, Se): Chalcogenides for Thin-Film Photovoltaics , 2017 .

[7]  D. Mitzi,et al.  Defect Engineering in Multinary Earth‐Abundant Chalcogenide Photovoltaic Materials , 2017 .

[8]  Yanfa Yan,et al.  Cu-based quaternary chalcogenide Cu2BaSnS4 thin films acting as hole transport layers in inverted perovskite CH3NH3PbI3 solar cells , 2017 .

[9]  James L. Young,et al.  Employing Overlayers To Improve the Performance of Cu2BaSnS4 Thin Film based Photoelectrochemical Water Reduction Devices , 2017 .

[10]  D. Mitzi,et al.  BaCu2Sn(S,Se)4: Earth-Abundant Chalcogenides for Thin-Film Photovoltaics , 2016 .

[11]  T. Buonassisi,et al.  Photovoltaics: Non-cubic solar cell materials , 2015 .

[12]  Andreas Bauer,et al.  Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7% , 2015 .

[13]  D. Mitzi,et al.  Semi-empirical device model for Cu2ZnSn(S,Se)4 solar cells , 2014 .

[14]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[15]  Tayfun Gokmen,et al.  Band tailing and efficiency limitation in kesterite solar cells , 2013 .

[16]  John P. Holdren,et al.  Population and the energy problem , 1991 .