Efficiency improvement in InP thin film solar cell using dielectric nanobars

In this paper, to significantly improve the conversion efficiency in a 1 μm InP thin film solar cell, array of perpendicular TiO 2 nanobars and backside grating are employed. TiO 2 nanobars are coated with a desired anti-reflector (AR) and partially embedded in the InP film to achieve strong light trapping. Optimizing the size of TiO 2 nanobars leads to an enhancement of 41.5% in the photocurrent current density, J ph , and 49.3% in power conversion efficiency, PCE, related to the conventional InP film. For boosting the long wavelength absorption, a back reflector (BR) structure including six SiO 2 layers with Si nanopyramid arrays is applied at the backside of the absorption film. Compared to the 1 μm InP thin film solar cell, the J ph and PCE are improved by 52.7% and about 59%, respectively. Finite-Difference-Time-Domain (FDTD) and Finite-Element-Method (FEM) are used to obtain the results.

[1]  H. Tan,et al.  Unveiling the Role of H2 Plasma for Efficient InP Solar Cells , 2023, Solar RRL.

[2]  Zhen Liu,et al.  Sputtering Al2O3 as an effective interface layer to improve open-circuit voltage and device performance of Sb2Se3 thin-film solar cells , 2023, Materials Science in Semiconductor Processing.

[3]  D. P. Samajdar,et al.  Role of metallic nanoparticles in the optoelectronic performance enhancement of InP ultrathin film solar cell , 2022, Optical Materials.

[4]  D. P. Samajdar,et al.  A Modified Hexagonal Pyramidal InP nanowire Solar Cell structure for Efficiency Improvement: Geometrical Optimisation and Device Analysis , 2022, Solar Energy.

[5]  A. Kapoor,et al.  Broadband light trapping in a-Si:H based plasmonic solar cells using Au core-Al2O3 shell composite nanospheres using FDTD method , 2022, Materials Technology.

[6]  B. García-Cámara,et al.  Light absorption enhancement in thin film GaAs solar cells using dielectric nanoparticles , 2022, Scientific Reports.

[7]  H. Qi,et al.  Boosting photoelectric performance of thin film GaAs solar cell based on multi-objective optimization for solar energy utilization , 2021, Solar Energy.

[8]  Gurjit Singh,et al.  Plasmonic Effects of Al Nanoparticles Embedded and Non-embedded in Thin Film GaAs Solar Cells with Ta2O5 Antireflective Coating , 2021, Plasmonics.

[9]  Asmaa M. Aly,et al.  Highly efficient SiO2 trapezoidal grating-based thin-film solar cell , 2021 .

[10]  Tiju Thomas,et al.  Aluminium nanoparticles alloyed with other earth-abundant plasmonic metals for light trapping in thin-film a-Si solar cells , 2021, Sustainable Materials and Technologies.

[11]  H. Tan,et al.  Passivation of InP solar cells using large area hexagonal-BN layers , 2021, npj 2D Materials and Applications.

[12]  Mahmoud A. Elrabiaey,et al.  Light absorption enhancement in ultrathin film solar cell with embedded dielectric nanowires , 2020, Scientific Reports.

[13]  D. Schaadt,et al.  Large photocurrent density enhancement assisted by non-absorbing spherical dielectric nanoparticles in a GaAs layer , 2020, Scientific Reports.

[14]  S. Gong,et al.  Light-trapping structure based on ultra-thin GaAs solar cell , 2020, Journal of Physics D: Applied Physics.

[15]  Yonggang Zhu,et al.  Theoretical investigation of broadband absorption enhancement in a-Si thin-film solar cell with nanoparticles , 2020 .

[16]  B. García-Cámara,et al.  Boosting ultrathin aSi-H solar cells absorption through a nanoparticle cross-packed metasurface , 2020 .

[17]  M. Yin,et al.  Light Propagation in Flexible Thin-film Amorphous Silicon Solar Cells with Nanotextured Metal Back Reflectors. , 2020, ACS applied materials & interfaces.

[18]  Douglas M. Bishop,et al.  Flexible CIGS, CdTe and a-Si:H based thin film solar cells: A review , 2020 .

[19]  M. Steiner,et al.  Optically-thick 300 nm GaAs solar cells using adjacent photonic crystals. , 2020, Optics express.

[20]  Wenjun Wang,et al.  Forward scattering nanoparticles based nanostructure for light trapping over solar spectrum , 2019, AIP Advances.

[21]  Gurjit Singh,et al.  Plasmon enhanced light trapping in thin film GaAs solar cells by Al nanoparticle array , 2019, Physics Letters A.

[22]  Paul W. Leu,et al.  High index of refraction nanosphere coatings for light trapping in crystalline silicon thin film solar cells , 2015 .

[23]  Ali Javey,et al.  19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact , 2014, ACS photonics.

[24]  Akio Yamamoto,et al.  A new approach for thin film InP solar cells , 1986 .

[25]  M. Hayati,et al.  Design of GaAs-thin film solar cell using TiO2 hemispherical nanoparticles array , 2022, Optics & Laser Technology.

[26]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .