RNAhybrid: microRNA target prediction easy, fast and flexible

In the elucidation of the microRNA regulatory network, knowledge of potential targets is of highest importance. Among existing target prediction methods, RNAhybrid [M. Rehmsmeier, P. Steffen, M. Höchsmann and R. Giegerich (2004) RNA, 10, 1507–1517] is unique in offering a flexible online prediction. Recently, some useful features have been added, among these the possibility to disallow G:U base pairs in the seed region, and a seed-match speed-up, which accelerates the program by a factor of 8. In addition, the program can now be used as a webservice for remote calls from user-implemented programs. We demonstrate RNAhybrid's flexibility with the prediction of a non-canonical target site for Caenorhabditis elegans miR-241 in the 3′-untranslated region of lin-39. RNAhybrid is available at .

[1]  Michael Zuker,et al.  Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information , 1981, Nucleic Acids Res..

[2]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[3]  Yuanji Zhang,et al.  miRU: an automated plant miRNA target prediction server , 2005, Nucleic Acids Res..

[4]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[5]  A. Hatzigeorgiou,et al.  A combined computational-experimental approach predicts human microRNA targets. , 2004, Genes & development.

[6]  R. Aharonov,et al.  Identification of hundreds of conserved and nonconserved human microRNAs , 2005, Nature Genetics.

[7]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[8]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[9]  V. Ambros microRNAs Tiny Regulators with Great Potential , 2001, Cell.

[10]  Nikolaus Rajewsky,et al.  Computational identification of microRNA targets , 2004, Genome Biology.

[11]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[12]  Tim Schedl,et al.  Caenorhabditis elegans lin-45 raf is essential for larval viability, fertility and the induction of vulval cell fates. , 2002, Genetics.

[13]  T R Bürglin,et al.  The Caenorhabditis elegans homeobox gene cluster. , 1993, Current opinion in genetics & development.

[14]  Stijn van Dongen,et al.  miRBase: microRNA sequences, targets and gene nomenclature , 2005, Nucleic Acids Res..

[15]  Colin N. Dewey,et al.  A Genome-Wide Map of Conserved MicroRNA Targets in C. elegans , 2006, Current Biology.

[16]  A. Hatzigeorgiou,et al.  TarBase: A comprehensive database of experimentally supported animal microRNA targets. , 2005, RNA.

[17]  H. Horvitz,et al.  The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. , 2005, Developmental cell.

[18]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[19]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[20]  R. Carthew Gene regulation by microRNAs. , 2006, Current opinion in genetics & development.

[21]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.