Contrasting Effects of Leaf Litter Quality and Diversity on Oviposition of Mosquitoes

[1]  B. Goto,et al.  Hard to predict! No clear effects of home-field advantage on leaf litter decomposition in tropical heath vegetation , 2022, Journal of Tropical Ecology.

[2]  A. Zanne,et al.  Coevolutionary legacies for plant decomposition. , 2022, Trends in ecology & evolution.

[3]  A. Uchôa,et al.  Arbovirus vectors insects: are botanical insecticides an alternative for its management? , 2022, Journal of Pest Science.

[4]  A. Wilke,et al.  Anthropogenic changes and associated impacts on vector-borne diseases. , 2021, Trends in parasitology.

[5]  Frank O. Masese,et al.  Latitude dictates plant diversity effects on instream decomposition , 2021, Science Advances.

[6]  Shi Chen,et al.  Do socioeconomic factors drive Aedes mosquito vectors and their arboviral diseases? A systematic review of dengue, chikungunya, yellow fever, and Zika Virus , 2020, One health.

[7]  L. Santiago,et al.  Small biodiversity effects on leaf litter production of a seasonal heath vegetation , 2020 .

[8]  P. Fearnside,et al.  Beyond diversity loss and climate change: Impacts of Amazon deforestation on infectious diseases and public health. , 2020, Anais da Academia Brasileira de Ciencias.

[9]  Zacchaeus G. Compson,et al.  Synergistic effects: a common theme in mixed-species litter decomposition. , 2020, The New phytologist.

[10]  V. Acuña,et al.  Effects of multiple stressors on river biofilms depend on the time scale , 2019, Scientific Reports.

[11]  A. Wilke,et al.  Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas , 2019, Scientific Reports.

[12]  C. Broeckling,et al.  Resource heterogeneity structures aquatic bacterial communities , 2019, The ISME Journal.

[13]  M. G. Castro,et al.  Haemagogus leucocelaenus and Haemagogus janthinomys are the primary vectors in the major yellow fever outbreak in Brazil, 2016–2018 , 2019, Emerging microbes & infections.

[14]  W. Resetarits,et al.  Colonization across gradients of risk and reward: Nutrients and predators generate species‐specific responses among aquatic insects , 2018 .

[15]  R. Patil,et al.  Biodiversity loss: Public health risk of disease spread and epidemics , 2017 .

[16]  W. Resetarits,et al.  Prey-driven control of predator assemblages: zooplankton abundance drives aquatic beetle colonization. , 2017, Ecology.

[17]  J. F. Day Mosquito Oviposition Behavior and Vector Control , 2016, Insects.

[18]  Nicola McHugh,et al.  Multiple‐stressor effects on leaf litter decomposition and fungal decomposers in agricultural streams contrast between litter species , 2016 .

[19]  R. Menna-Barreto,et al.  Physical features and chitin content of eggs from the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus: Connection with distinct levels of resistance to desiccation. , 2015, Journal of insect physiology.

[20]  A. Uchôa,et al.  Evaluation of seed extracts from plants found in the Caatinga biome for the control of Aedes aegypti , 2014, Parasitology Research.

[21]  I. Khan,et al.  Plant based products: use and development as repellents against mosquitoes: A review. , 2014, Fitoterapia.

[22]  S. Juliano,et al.  Attracted to the enemy: Aedes aegypti prefers oviposition sites with predator-killed conspecifics , 2014, Oecologia.

[23]  U. Dieckmann,et al.  Resource heterogeneity can facilitate cooperation , 2013, Nature Communications.

[24]  Diana H. Wall,et al.  Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. , 2013, Ecology letters.

[25]  J. García-Rejón,et al.  Development and Laboratory Evaluation of Chemically-Based Baited Ovitrap for the Monitoring of Aedes aegypti , 2013, Journal of vector ecology : journal of the Society for Vector Ecology.

[26]  D. Natal,et al.  Mosquitoes in Degraded and Preserved Areas of the Atlantic Forest and Potential for Vector-Borne Disease Risk in the Municipality of São Paulo, Brazil , 2012, Journal of vector ecology : journal of the Society for Vector Ecology.

[27]  T. Vrede,et al.  Effects of nutrients and physical lake characteristics on bacterial and phytoplankton production: A meta‐analysis , 2011 .

[28]  M. Gessner,et al.  Diversity meets decomposition. , 2010, Trends in ecology & evolution.

[29]  F. Esteves,et al.  The prominence of and biases in biodiversity and ecosystem functioning research , 2010, Biodiversity and Conservation.

[30]  C. B. Marcondes,et al.  Seasonal Variation of Potential Flavivirus Vectors in an Urban Biological Reserve in Northeastern Brazil , 2009, Journal of medical entomology.

[31]  G. Woodward,et al.  Resource quality and stoichiometric constraints on stream ecosystem functioning , 2009 .

[32]  W. Resetarits,et al.  Spatial contagion of predation risk affects colonization dynamics in experimental aquatic landscapes. , 2009, Ecology.

[33]  B. Cardinale,et al.  Diversity has stronger top-down than bottom-up effects on decomposition. , 2009, Ecology.

[34]  K. Ganesan,et al.  Electroantennogram, flight orientation, and oviposition responses of Aedes aegypti to the oviposition pheromone n-heneicosane , 2009, Parasitology Research.

[35]  W. Resetarits,et al.  Oviposition behavior partitions aquatic landscapes along predation and nutrient gradients , 2008 .

[36]  T. Bukovinszky,et al.  Direct and Indirect Effects of Resource Quality on Food Web Structure , 2008, Science.

[37]  M. Bradford,et al.  Nonadditive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream. , 2007, Ecology.

[38]  S. Scheu,et al.  Biodiversity and Litter Decomposition in Terrestrial Ecosystems , 2005 .

[39]  D. Wardle,et al.  Ecological Linkages Between Aboveground and Belowground Biota , 2004, Science.

[40]  M. Scheffer,et al.  Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co‐tolerance , 2004 .

[41]  Z. Cardon,et al.  Decomposition dynamics in mixed‐species leaf litter , 2004 .

[42]  Anthonyérico Guimarães,et al.  Ecologia de mosquitos em áreas do Parque Nacional da Serra da Bocaina: II -- Freqüência mensal e fatores climáticos , 2001 .

[43]  Michel Loreau,et al.  Partitioning selection and complementarity in biodiversity experiments , 2001, Nature.

[44]  B. Malmqvist,et al.  Ecosystem process rate increases with animal species richness: evidence from leaf‐eating, aquatic insects , 2000 .

[45]  C. Schal,et al.  Laboratory and field evaluations of oviposition responses of Aedes albopictus and Aedes triseriatus (Diptera: Culicidae) to oak leaf infusions. , 1998, Journal of medical entomology.

[46]  A. Hector The effect of diversity on productivity : detecting the role of species complementarity , 1998 .

[47]  R. Aerts Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems : a triangular relationship , 1997 .

[48]  J. Lawton,et al.  Empirical Evidence that Declining Species Diversity May Alter the Performance of Terrestrial Ecosystems , 1995 .

[49]  J. Lawton,et al.  Declining biodiversity can alter the performance of ecosystems , 1994, Nature.

[50]  J. Aho,et al.  Interspecific Leaf Interactions during Decomposition in Aquatic and Floodplain Ecosystems , 1994, Journal of the North American Benthological Society.

[51]  Burt P. Kotler,et al.  Oviposition habitat selection by the mosquito, Culiseta longiareolata: effects of conspecifics, food and green toad tadpoles , 1993 .

[52]  J. Voshell,et al.  Colonization of new experimental ponds by benthic macroinvertebrates , 1991 .

[53]  J. Blair,et al.  Decay Rates, Nitrogen Fluxes, and Decomposer Communiies of Single‐ and Mixed‐Species Foliar Litter , 1990 .

[54]  E. Werner Amphibian Metamorphosis: Growth Rate, Predation Risk, and the Optimal Size at Transformation , 1986, The American Naturalist.

[55]  Benjamin L Turner,et al.  Nutrient-specific solubility patterns of leaf litter across 41 lowland tropical woody species. , 2013, Ecology.

[56]  C. Arellano,et al.  Species Composition of Bacterial Communities Influences Attraction of Mosquitoes to Experimental Plant Infusions , 2009, Microbial Ecology.

[57]  M. Rödel,et al.  Oviposition site selection in a complex and variable environment: the role of habitat quality and conspecific cues , 2004, Oecologia.

[58]  Rotraut A. G. B. Consoli,et al.  Principais mosquitos de importância sanitária no Brasil , 1994 .

[59]  E. Walker,et al.  Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. , 1992, Annual review of entomology.

[60]  T. Leigh,et al.  Influence of Resource Quality on the Reproductive Fitness of Flower Thrips (Thysanoptera: Thripidae) , 1988 .