Coherent forecasting for stationary time series of discrete data

Coherent forecasting for discrete-valued stationary time series is considered in this article. In the context of count time series, different methods of coherent forecasting such as median forecasting and mode forecasting are used to obtain $$h$$h-step ahead coherent forecasting. However, there are not many existing works in the context of categorical time series. Here, we consider the case of a finite number of categories with different possible models, such as the Pegram’s operator-based ARMA($$p$$p,$$q$$q) model, the mixture transition distribution model and the logistic regression model, and study their $$h$$h-step ahead coherent forecasting. Some theoretical results are derived along with some numerical examples. To facilitate comparison among the three models, we use some forecasting measures. The procedure is illustrated using one real-life categorical data, namely the infant sleep status data.

[1]  Robert C. Jung,et al.  Coherent forecasting in integer time series models , 2006 .

[2]  M. Tygert,et al.  A comparison of the discrete Kolmogorov-Smirnov statistic and the Euclidean distance , 2012, 1206.6367.

[3]  Eddie McKenzie,et al.  Discrete variate time series , 2003 .

[4]  Peter A. W. Lewis,et al.  STATIONARY DISCRETE AUTOREGRESSIVE‐MOVING AVERAGE TIME SERIES GENERATED BY MIXTURES , 1983 .

[5]  Atanu Biswas,et al.  Discrete-valued ARMA processes , 2009 .

[6]  Mohamed Alosh,et al.  An integer-valued pth-order autoregressive structure (INAR(p)) process , 1990, Journal of Applied Probability.

[7]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[8]  E. McKenzie,et al.  Some ARMA models for dependent sequences of poisson counts , 1988, Advances in Applied Probability.

[9]  G. G. S. Pegram,et al.  An autoregressive model for multilag Markov chains , 1980, Journal of Applied Probability.

[10]  Rainer Göb,et al.  Measuring serial dependence in categorical time series , 2008 .

[11]  David S. Stoffer,et al.  The spectral envelope and its applications , 2000 .

[12]  Atanu Biswas,et al.  Time series analysis of categorical data using auto-mutual information , 2009 .

[13]  David S. Stoffer,et al.  A Walsh—Fourier Analysis of the Effects of Moderate Maternal Alcohol Consumption on Neonatal Sleep-State Cycling , 1988 .

[14]  Jim Hefferon,et al.  Linear Algebra , 2012 .

[15]  Maria Eduarda Silva,et al.  FORECASTING IN INAR(1) MODEL , 2009 .

[16]  Christian H. Weií Serial dependence of NDARMA processes , 2013 .

[17]  Brendan McCabe,et al.  Forecasting discrete valued low count time series , 2004 .

[18]  Peter A. W. Lewis,et al.  Discrete time series generated by mixtures III: Autoregressive processes (DAR(p)) , 1978 .

[19]  Peter A. W. Lewis,et al.  Discrete Time Series Generated by Mixtures Ii: Asymptotic Properties , 1978 .

[20]  Christian H. Weiß,et al.  Empirical measures of signed serial dependence in categorical time series , 2011 .

[21]  B. Kedem,et al.  Regression Theory for Categorical Time Series , 2003 .

[22]  Mohamed Alosh,et al.  FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .

[23]  A. Raftery A model for high-order Markov chains , 1985 .

[24]  Alan Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[25]  Peter A. W. Lewis,et al.  Discrete Time Series Generated by Mixtures. I: Correlational and Runs Properties , 1978 .

[26]  Ruijun Bu,et al.  Model Selection, Estimation and Forecasting in INAR(p) Models: , 2008 .

[27]  Kendall E. Atkinson An introduction to numerical analysis , 1978 .

[28]  A. Raftery,et al.  The Mixture Transition Distribution Model for High-Order Markov Chains and Non-Gaussian Time Series , 2002 .

[29]  Christian H. Weiß Serial dependence of NDARMA processes , 2013, Comput. Stat. Data Anal..

[30]  Ed. McKenzie,et al.  SOME SIMPLE MODELS FOR DISCRETE VARIATE TIME SERIES , 1985 .